
Performance Evaluation 162 (2023) 102376

A
0

Contents lists available at ScienceDirect

Performance Evaluation

journal homepage: www.elsevier.com/locate/peva

POBO: Safe and optimal resource management for cloud
microservices
Hengquan Guo1, Hongchen Cao1, Jingzhu He ∗, Xin Liu ∗, Yuanming Shi
ShanghaiTech University, China

A R T I C L E I N F O

Keywords:
Microservice resource management
Service-Level Agreement
Safe Bayesian optimization
Primal–dual optimization
Penalty-based design

A B S T R A C T

Resource management in microservices is challenging due to the uncertain latency–resource
relationship, dynamic environment, and strict Service-Level Agreement (SLA) guarantees. This
paper presents a Pessimistic and Optimistic Bayesian Optimization framework, named POBO, for
safe and optimal resource configuration for microservice applications. POBO leverages Bayesian
learning to estimate the uncertain latency–resource functions and combines primal–dual and
penalty-based optimization to maximize resource efficiency while guaranteeing strict SLAs. We
prove that POBO can achieve sublinear regret and SLA violation against the optimal resource
configuration in hindsight. We have implemented a prototype of POBO and conducted extensive
experiments on a real-world microservice application. Our results show that POBO can find
the safe and optimal configuration efficiently, outperforming Kubernetes’ built-in auto-scaling
module and the state-of-the-art algorithms.

1. Introduction

1.1. Motivation

The rapid emergence of microservices has revolutionized how software applications are designed and managed. Microservices
are loosely coupled, enabling better modularity, improved fault isolation, easier scaling, and more agile development in technology
choices compared to traditional monolithic architectures [1]. Leading cloud service providers, such as Google and Amazon, often
offer off-the-shelf microservice architecture for users to build their applications [2–4].

Despite the benefits of microservice architecture, resource management for microservice applications faces several challenges.
First, the requests’ latencies are affected by the amount of allocated resources; nevertheless, such a relationship is uncertain. For
example, Fig. 1(a) plots the P90 latency of three different requests versus the number of allocated containers. We observe that
different types of requests show different latency–resource relationships. For each type of request, when more containers are used,
the P90 latencies decrease nonlinearly. When reaching the convergent point (e.g., 101.81 ms of P90 latency when 20 containers are
used for the login request), the P90 latencies do not decrease anymore, even though we add more resources to the microservice.
Accurately understanding and learning the latency–resource relationship and finding an optimal configuration remains a challenge.
Besides that, the heterogeneity of requests’ arrival patterns introduces another level of uncertainty to learning the function.

Second, microservices usually run in a dynamic environment because multiple services are co-located on a common cloud server
in a real-world system. Fig. 1(b) illustrates the latency–resource function for one microservice with and without co-located running

∗ Corresponding authors.
E-mail addresses: guohq@shanghaitech.edu.cn (H. Guo), caohch1@shanghaitech.edu.cn (H. Cao), hejzh1@shanghaitech.edu.cn (J. He),

liuxin7@shanghaitech.edu.cn (X. Liu), shiym@shanghaitech.edu.cn (Y. Shi).
1 These authors contributed equally to this work.
vailable online 10 October 2023
166-5316/© 2023 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.peva.2023.102376

https://www.elsevier.com/locate/peva
http://www.elsevier.com/locate/peva
mailto:guohq@shanghaitech.edu.cn
mailto:caohch1@shanghaitech.edu.cn
mailto:hejzh1@shanghaitech.edu.cn
mailto:liuxin7@shanghaitech.edu.cn
mailto:shiym@shanghaitech.edu.cn
https://doi.org/10.1016/j.peva.2023.102376
http://crossmark.crossref.org/dialog/?doi=10.1016/j.peva.2023.102376&domain=pdf
https://doi.org/10.1016/j.peva.2023.102376

Performance Evaluation 162 (2023) 102376H. Guo et al.

s
t
a
e
o
f
c
s

t
w

c
T
l
l
o
p
f

1

h
r
l
S
s

Fig. 1. The three challenges of achieving safe and efficient configuration in microservices: uncertain latency–resource relationship, dynamic environment, and
strict SLA requirement. (a) The correlation between the number of containers and P90 latencies across various requests. (b) The P90 latency curves with and
without co-located services. (c) The percentage of violated requests by using the Kubernetes auto-scaler.

services. We observe that the function fluctuates more in the presence of other co-located services compared with the one without any
co-located services. In other words, microservices’ dynamic runtime environment poses a challenge in learning the latency–resource
function, making it even more difficult to find the optimal resource configuration efficiently.

Third, the availability of microservices is determined by a user-defined Service-Level Agreement (SLA), which is usually strict
ince users always expect short response times for requests and a small percentage of requests violating a user-defined response
ime requirement. For example, Fig. 1(c) shows that by using Kubernetes’ built-in auto-scaler for three types of requests, there
re 3% or more requests have response times that exceed the user-defined requirement (i.e., 300 ms) on average, while users
xpect that the percentage is less than 2%. In addition, it is difficult for users, even experienced developers, to come up with the
ptimal configuration of the auto-scaler while satisfying the SLA requirements. The dilemma is that (1) by using fewer resources
or microservices, the SLA requirements are easier to violate, and (2) by using more resources for microservices, there is a higher
hance of causing resource waste while the requests’ response times cannot be shortened further. It is challenging to understand
uch tradeoffs and to find the optimal solution while ensuring SLA guarantees strictly.

To address these challenges, we aim to develop a general framework that can accurately learn the latency–resource functions in
he dynamic environment and quickly identify the most efficient configuration without prior knowledge of requests’ arrival patterns
hile ensuring SLA guarantees.

In this paper, we study the problem of microservice resource management, where we optimize resource utilization while
onsidering SLA constraints on average system-wide request latency and tail latency for latency-sensitive applications, respectively.
he SLA on the system-wide request’s latency targets a decent service across all requests. The SLA on the tail latency is for the

atency-sensitive applications that have priority. To tackle this problem, we introduce a Bayesian optimization-based approach to
earn the inherent complexity and uncertainty in the microservice architecture. Then, we propose a primal–dual and penalty-based
ptimization to explore various resource configurations safely. Our approach acts in an online manner without offline performance
rofiling and can quickly converge to a safe and efficient configuration. Besides, we want to emphasize that our approach is very
lexible to incorporate other types of constraints beyond the current constraints on the system-wide latency or tail latency.

.2. Related work

Microservices resource management. Resource management in microservices has gained significant attention in the literature.
GRAF [5] employed graph neural networks for predicting latency and optimized resource efficiency and SLA satisfaction using a

andcrafted designed penalty coefficient. Sinan [6] also trained ML-based models to predict the latency performance and designed a
ule-based scheduler to meet SLA requirements. Erms [7] approximated the latency of a microservice application with a piece-wise
inear function w.r.t. the workload, resource usage, and interference and used it to design resource-efficient scheduling policies with
LA guarantees. These works fall into a category of ‘‘off-profile then optimize’’ approaches, and SLA requirements might fail to be
atisfied in the dynamic environment.

(Safe) Bayesian optimization for resource management. Bayesian optimization (BO) has been widely used for microservice
management in searching for the best resource configuration [8–11]. RAMBO [8] used a BO approach to construct an acquisition
function that combines multiple objectives and optimizes multiple metrics simultaneously (e.g., throughput, resource consumption).
CLITE [9] also used BO with a manually crafted objective function to achieve QoS (Quality of Service) for latency-critical requests.
These studies show the potential of BO in efficient microservice resource management. However, they cannot model the noisy and
dynamic nature in microservice infrastructures [12]. Aquatope [12] used an advanced Bayesian neural network to account for the
dynamic interference and aimed at satisfying SLA on the average latency instead of SLA on tail latency.

Safe/Constrained BO is a proper framework for the microservice resource configuration while guaranteeing SLA, where SLA
requirements are naturally formulated as the constraints [11–13]. A common approach in these works is to construct a safe/feasible
set within which an optimal decision can be searched for. However, the approach suffers from high computational complexity and
2

Performance Evaluation 162 (2023) 102376H. Guo et al.

m
t
s
s

1

s
s


S
e

2

o
𝑡
c
c
m
f
p
d

w

has to assume a known safe decision in advance. Recently, two lightweight algorithms have been proposed to solve safe BO, CKB
in [14] and RPOL in [15]. The work [14] established the sublinear regret and average constraint violation, and [15] established
the sublinear regret and cumulative constraint violation. However, neither work can guarantee average and cumulative violation
simultaneously. Besides, the proposed algorithms only target optimizing the performance metrics for the systems serving single-type
requests.

In this paper, we propose POBO, a lightweight algorithm for safe and optimal resource configuration for microservice
anagement. Compared to these existing works, our algorithm can guarantee SLA requirements on both system-wide latency and

ail latency. Theoretically speaking, our work establishes a sublinear regret while minimizing both average constraint violation (for
ystem-wide latency) and cumulative violation (for tail latency) simultaneously. Moreover, our algorithm is applicable to systems
erving multiple-type requests coexistence and does not require any prior knowledge of the distribution of arriving requests.

.3. Main contribution

In this paper, we study the problem of microservice resource management with SLA guarantees. Our objective is to design a
equence of resource configurations {𝑥1, 𝑥2,… , 𝑥𝑇 } to maximize resource utility E[

∑𝑇
𝑡=1 𝑓 (𝑐𝑡, 𝑥𝑡)] over 𝑇 periods while satisfying the

ystem-wide latency constraint E[∑𝑇
𝑡=1 𝑔(𝑐𝑡, 𝑥𝑡)] ≤ 0 and the tail latency constraints 𝐺(𝑐𝑡, 𝑥𝑡) ≤ 0 for the request 𝑐𝑡 in the priority set

𝑝. As the functions 𝑓 (⋅, ⋅), 𝑔(⋅, ⋅), and 𝐺(⋅, ⋅) are black-box functions and potentially very complicated, it is unavoidable to have SLA
violations: the system-wide latency violation (or average violation), E[∑𝑇

𝑡=1 𝑔(𝑐𝑡, 𝑥𝑡)] and the tail latency violation (or cumulative
violation), E[∑𝑇

𝑡=1 𝐺
+(𝑐𝑡, 𝑥𝑡)I{𝑐𝑡 ∈ 𝑝}]. We introduce POBO, an efficient resource configuration framework to maximize resource

efficiency while keeping the SLA violation minimal. Our contribution can be summarized as follows:

• Algorithm Design: POBO adopts optimistic and pessimistic Bayesian learning for black-box functions and leverages primal–
dual and penalty-based optimization to synthesize a single surrogate function to simultaneously control the system-wide latency
and tail latency. This design can automatically balance resource efficiency and SLA violation.

• Theoretical Analysis: We establish that POBO achieves 𝑂(𝛾𝑇
√

𝑇) regret, 𝑂(1) average violation, and 𝑂(𝛾𝑇
√

𝑇) cumulative
violation over 𝑇 periods, which matches the best average violation in [14] and the best cumulative violation in RPOL [15]. To
prove the theoretical results, we establish a novel Lyapunov drift analysis that incorporates the penalized constraint functions,
which enables a unified analysis of ‘‘regret + average constraint + cumulative violation’’ as a whole.

• Implementation: We have implemented a prototype of POBO and conducted extensive experiments on a real-world microser-
vice application. Our experimental results show that POBO significantly outperforms the Kubernetes built-in HPA auto-scaler
and the state-of-the-art algorithm CKB. POBO can effectively adjust resource configurations in response to incoming requests.
The results also demonstrate that POBO can swiftly converge to the optimal policy without prior knowledge of the distribution
of multiple-type requests, thereby outperforming other scaling mechanisms. Lastly, the results show POBO’s robustness in
dynamic environments, proving that POBO is applicable in a broader setting.

• Code Availability: The source code of POBO is available at https://github.com/caohch-1/POBO.

The rest of the paper is organized as follows. Section 2 introduces the problem formulation of microservice resource management.
ection 3 discusses the design of POBO. Section 4 presents the theoretical results and analysis. Section 5 presents the experimental
valuation. Section 6 concludes the paper.

. Microservice resource management: a constrained Bayesian optimization approach

In this section, we introduce the problem of microservice resource management and formulate it via constrained Bayesian
ptimization. We study a microservice system with a pool of containers where a stream of requests arrives continuously. At period
, a 𝑐𝑡-type request (𝑐𝑡 ∈ ) arrives according to an unknown underlying distribution P(⋅). The resource manager decides a resource
onfiguration 𝑥𝑡 for the request. When the request 𝑐𝑡 is completed at period 𝑡, we observe the (noisy) feedback information for the
onfiguration 𝑥𝑡, such as the residual resources, average latency, and tail latency. In the microservice system, the resource manager
ust maintain a low system-wide latency while guaranteeing a strict SLA for latency-critical requests. Given the configuration 𝑥𝑡

or the 𝑐𝑡-type microservice request, we model 𝑓 (𝑐𝑡, 𝑥𝑡) to be the resource utility (e.g., residual resources); 𝑔(𝑐𝑡, 𝑥𝑡) to be the average
erformance metric (e.g., average latency); and 𝐺(𝑐𝑡, 𝑥𝑡) to be the critical performance metric (e.g., P90 tail latency). Due to the
ynamic nature of the microservice system, we only have access to the noisy feedback as follows

𝑟𝑡 = 𝑓 (𝑐𝑡, 𝑥𝑡) + 𝜂𝑡,

𝑣𝑡 = 𝑔(𝑐𝑡, 𝑥𝑡) + 𝜉𝑡,

𝑤𝑡 = 𝐺(𝑐𝑡, 𝑥𝑡) + 𝜏𝑡, ∀𝑐𝑡 ∈ 𝑝,

here 𝜂𝑡, 𝜉𝑡, and 𝜏𝑡 denote the noise. The problem of microservice resource management can be formulated in the following

max
𝑥𝑡∈

E

[

1
𝑇

𝑇
∑

𝑡=1
𝑓 (𝑐𝑡, 𝑥𝑡)

]

(1)

s.t. E

[

1
𝑇
∑

𝑔(𝑐𝑡, 𝑥𝑡)

]

≤ 0, (2)
3

𝑇 𝑡=1

https://github.com/caohch-1/POBO

Performance Evaluation 162 (2023) 102376H. Guo et al.

m

e

t
d

H
p

3

m

3

m
c
c
U

𝐺(𝑐𝑡, 𝑥𝑡) ≤ 0, ∀𝑐𝑡 ∈ 𝑝, (3)

where the objective (1) denotes the average resource utility; (2) denotes the average system-wide latency constraint; and (3) denotes
the tail latency constraint for latency-sensitive (priority) requests.

Given the full knowledge of the system (i.e., the statistics of arrival requests P(⋅), resource utility function 𝑓 (⋅, ⋅), and latency
functions 𝑔(⋅, ⋅) and 𝐺(⋅, ⋅), one could compute an offline optimal resource configuration by solving (1)–(3). However, as discussed
in the section of Introduction, it is extremely challenging (if not impossible) to obtain this accurate information because of the
uncertain, dynamic, and noisy nature of the microservice systems. Therefore, we propose a learning-based approach to address
these challenges.

2.1. Bayesian optimization

Since 𝑓 (⋅, ⋅), 𝑔(⋅, ⋅), and 𝐺(⋅, ⋅) are unknown apriori and complicated (latency functions 𝑔 and 𝐺 have very complicated relationship
w.r.t. the request structure and configuration [7,10,16]), we model them with Gaussian processes (GPs) via a Bayesian perspective
to tackle the uncertainty and noise. Technically, we assume that the reward and constraint functions lie within a Reproducing
Kernel Hilbert Space (RKHS) with a bounded norm such that these black-box functions can be modeled properly with GPs. This
regular assumption is reasonable in the context of microservice resource management, as it captures the inherent continuity of the
underlying functions as shown in Fig. 1.

Gaussian process model for reward and constraints functions: Gaussian process (GP) is a random process including a
collection of random variables that follows a joint Gaussian distribution. A Gaussian process (𝜇(𝑥), 𝑘𝑡(𝑥, 𝑥′)) over  is specified
by its mean 𝜇(𝑥) and covariance 𝑘(𝑥, 𝑥′). For a type-𝑐 request, we introduce its GP for the reward function 𝑓 (𝑐, 𝑥) and GPs for 𝑔 and
𝐺 are similar.

We define (𝜇𝑓 (𝑐, 𝑥), 𝑘𝑓 (𝑐, 𝑥, 𝑥′)) for 𝑓 (𝑐, 𝑥) such that 𝜇𝑓 (𝑐, 𝑥) = E[𝑓 (𝑐, 𝑥)] and 𝑘𝑓 (𝑐, 𝑥, 𝑥′) = E[(𝑓 (𝑐, 𝑥) − 𝜇𝑓 (𝑐, 𝑥))(𝑓 (𝑐, 𝑥′) −
𝜇𝑓 (𝑐, 𝑥′))]. Let 𝑡 = {𝑥1,… , 𝑥𝑡−1} be the collection of decisions and {𝑟1,… , 𝑟𝑡−1} be the collection of noisy reward feedback until 𝑡th
period, respectively. The posterior distribution (𝜇𝑓

𝑡 (⋅, ⋅), 𝑘
𝑓
𝑡 (⋅, ⋅, ⋅)) updates at the beginning of period 𝑡

𝜇𝑓
𝑡 (𝑐, 𝑥) = 𝑘𝑓𝑡 (𝑐, 𝑥)

𝑇 (𝑉 𝑓
𝑡 (𝑐, 𝜆))−1𝑟1∶𝑡 (4)

𝑘𝑓𝑡 (𝑐, 𝑥, 𝑥
′) = 𝑘𝑓 (𝑐, 𝑥, 𝑥′) − 𝑘𝑓𝑡 (𝑐, 𝑥)

𝑇 (𝑉 𝑓
𝑡 (𝑐, 𝜆))−1𝑘𝑓𝑡 (𝑥

′), (5)

𝜎𝑓𝑡 (𝑐, 𝑥) =
√

𝑘𝑓𝑡 (𝑐, 𝑥, 𝑥), (6)

where 𝐾𝑓
𝑡 (𝑐) ∶= [𝑘𝑓 (𝑐, 𝑥, 𝑥′)]𝑥,𝑥′∈{𝑥1 ,…,𝑥𝑡−1}, 𝑉 𝑓

𝑡 (𝑐, 𝜆) ∶= 𝐾𝑓
𝑡 (𝑐) + 𝜆𝐼 , 𝜆 = 1 + 2∕𝑇 , 𝑟1∶𝑡 = [𝑟1,… , 𝑟𝑡−1], and 𝑘𝑓𝑡 (𝑐, 𝑥) ∶=

[𝑘𝑓 (𝑐, 𝑥1, 𝑥),… , 𝑘𝑓 (𝑐, 𝑥𝑡−1, 𝑥)]𝑇 . Similarly, we define GP models for the constraint function 𝑔 and 𝐺 to be (𝜇𝑔
𝑡 (𝑐, 𝑥), 𝑘

𝑔
𝑡 (𝑐, 𝑥, 𝑥

′))
and (𝜇𝐺

𝑡 (𝑐, 𝑥), 𝑘
𝐺
𝑡 (𝑐, 𝑥, 𝑥

′)) with the mean 𝜇𝑔
𝑡 (𝑐, 𝑥) and 𝜇𝐺

𝑡 (𝑐, 𝑥) and the covariance 𝑘𝑔𝑡 (𝑐, 𝑥, 𝑥
′) and 𝑘𝐺𝑡 (𝑐, 𝑥, 𝑥

′), respectively. The
odels for 𝑔 and 𝐺 update the same as in (4)–(6). The kernel function is designed by choice, and one popular kernel is the square

xponential (SE) kernel 𝑘SE(𝑐, 𝑥, 𝑥′) = 𝑒
−‖𝑥−𝑥′‖2

2𝑢2 ,∀𝑐, where 𝑢 > 0 is a positive hyper-parameter.
With the estimated mean and variance in (4) and (6), we construct a confidence interval for the objective function 𝑓 (𝑐, 𝑥).

Specifically, we design a proper 𝛽𝑓𝑡 such that 𝑓 (𝑐, 𝑥) lies within its lower confidence bound (LCB) and upper confidence bound
(UCB)

[𝜇𝑓
𝑡 (𝑐, 𝑥) − 𝛽𝑓𝑡 𝜎

𝑓
𝑡 (𝑐, 𝑥), 𝜇

𝑓
𝑡 (𝑐, 𝑥) + 𝛽𝑓𝑡 𝜎

𝑓
𝑡 (𝑐, 𝑥)]

with a high probability according to [17]. Moreover, we have the similar confidence intervals with proper 𝛽𝑔𝑡 and 𝛽𝐺𝑡 such that
[𝜇𝑔

𝑡 (𝑐, 𝑥)−𝛽𝑔𝑡 𝜎
𝑔
𝑡 (𝑐, 𝑥), 𝜇

𝑔
𝑡 (𝑐, 𝑥)+𝛽𝑔𝑡 𝜎

𝑔
𝑡 (𝑐, 𝑥)] for 𝑔 function and [𝜇𝐺

𝑡 (𝑐, 𝑥)−𝛽𝐺𝑡 𝜎
𝐺
𝑡 (𝑐, 𝑥), 𝜇

𝐺
𝑡 (𝑐, 𝑥)+𝛽𝐺𝑡 𝜎

𝐺
𝑡 (𝑐, 𝑥)] for 𝐺 function. For the simple

exposition, let the parameters of the Gaussian processes be 𝛩𝑓
𝑡 = (𝜇𝑓

𝑡 , 𝜎
𝑓
𝑡 , 𝑘

𝑓
𝑡), 𝛩

𝑔
𝑡 = (𝜇𝑔

𝑡 , 𝜎
𝑔
𝑡 , 𝑘

𝑔
𝑡), and 𝛩𝐺

𝑡 = (𝜇𝐺
𝑡 , 𝜎

𝐺
𝑡 , 𝑘

𝐺
𝑡).

For unconstrained Bayesian optimization, one could utilize the principle of optimism in the face of uncertainty (OFU) and design
he upper confidence bound (UCB) algorithm to address the exploration–exploitation dilemma. Specifically, the GP-UCB algorithm
ecides a configuration such that

𝑥𝑡 = arg max
𝑥∈

𝜇𝑓
𝑡 (𝑐, 𝑥) + 𝛽𝑓𝑡 𝜎

𝑓
𝑡 (𝑐, 𝑥).

owever, under (black-box) SLA constraints, we need to safely explore the configuration space with as small SLA violation as
ossible. This requires a careful balance between resource efficiency and SLA. Next, we introduce POBO to achieve this goal.

. System and algorithm design

In this section, we present the design of the POBO framework. We first illustrate the system design and then describe the resource
anagement algorithm.

.1. Framework overview

Fig. 2 gives an overview of how POBO works. When receiving a request from the user, POBO sends the request to the Learning
odule to estimate the request latency w.r.t. a variety of resource configurations. The Decision module determines the best resource

onfiguration for the request and adjusts the number of containers via the resource manager. After the request is completed, POBO
ollects the feedback, including Service-Level Agreement (SLA) violation and tail latency, which is used to update Learning and
4

pdate modules for the next period.

Performance Evaluation 162 (2023) 102376H. Guo et al.
Fig. 2. The system architecture of POBO.

Fig. 3. A request’s trace example.

3.2. System design

As shown in Fig. 2, the container orchestration platform, i.e., Kubernetes, manages a cluster of pre-warmed containers. Since
microservice applications are highly decoupled, each unit service is typically deployed and managed as a separate deployment. For
example, the login service is provided by one deployment, and the recommendation service is provided by another deployment. For
each deployment, pods are the minimum units that Kubernetes can create and manage. A pod is defined as a group of one or more
containers with shared storage and network resources and a specification on how to run the containers. Initially, all deployments
of our microservice application use one pod by default. Each deployment has a fixed maximum number of pods to deliver the
unit service. Within the deployment, each container is pre-warmed, which means that each container is already installed with the
same image that delivers the unit service before the microservice application runs. The advantage is that by simply activating or
deactivating containers of several pods, POBO changes the amount of allocated resources to quickly react to the workload change. In
comparison, for cold start approaches, it is essential to create or destroy a pod and its container(s) from scratch to achieve scaling,
which causes considerable delays before requests are processed, further prolonging response times.

The user, i.e., the workload generator, sends the request to the front end of microservice applications continuously. Note that
the front-end unit service is achieved by the pods within the front-end deployment, i.e., Deployment FE in Fig. 2. Once an incoming
request is received, the pods parse the request and send useful information, including the request type 𝑐𝑡, to the Learning module.
The primary goal of the learning model is to give the estimated request latency based on the request type. For each request type,
POBO maintains a particular Gaussian process model and estimates the latency via UCB/LCB learning. After that, the estimated
request latency is fed into the Decision module to determine the optimal resource configuration. We implement a resource manager
module that is plugged into Kubernetes. Based on the received resource configuration, the resource manager adjusts the number of
running pods to process the request within the corresponding deployment.

As shown in Fig. 2, we deploy a tracing module within each container to record information about the request. Fig. 3 presents
a request’s tracing example well-structured in JSON format. Each trace has its own unique trace ID. The trace is formed into the
hierarchical tree structure. For example, each trace consists of multiple spans where the ‘traceID’ is viewed as the root and the
5

Performance Evaluation 162 (2023) 102376H. Guo et al.

t
e
t

t
o
o
t
r
f

t
a

3

m

‘spanID’ is viewed as the leaf. We can drill down the tree path to find the deployment where the trace example is collected.
The trace consists of multiple fields. The ‘operationName’ and ‘tag’ fields show the request type and the associated URL
link. The ‘startTime’ field indicates the timestamp when the request arrives at the pod, and the ‘duration’ field indicates
he execution time to process the request, also viewed as the latency. Based on the collected latencies during one period, we can
asily get the Service-Level Agreement (SLA) violation based on user-defined response time requirement and tail latency based on
he requests’ latency distribution.

We use Jaeger [18] to implement end-to-end distributed tracing because (1) Jaeger is a generic tracing tool that is agnostic
o microservice applications and programming languages; (2) the collected request latencies are accurate; and 3) the runtime
verhead is negligible for each tracing module. However, the microservice applications are usually built on top of tens or hundreds
f containers and each of which contains a tracing module. To reduce the overhead imposed by multiple tracing modules, we adopt
he down-sampling strategy to trace the requests selectively. For example, POBO only traces 50 requests when 100 requests are
eceived and processed. We tune the sampling rate to reduce the overall overhead to less than 3.5%, which makes POBO practical
or use in production systems.

After the request is processed, POBO sends the traced request latency to the Learning module to update the GPs model between
he resource configuration and latency for each request type. Moreover, when one period elapses, POBO sends the SLA violation
nd tail latency to the Update module consisting of Dual update and Penalty update to update the cumulative SLAs violation.

.3. Online resource management algorithm

In this section, we propose a pessimistic and optimistic Bayesian optimization (POBO) framework to address the problem of
icroservice resource management. POBO learns the reward function 𝑓𝑡 optimistically, and the constraint functions 𝑔̌𝑡 and 𝐺̌𝑡

pessimistically. Motivated by the primal–dual and penalty-based optimization approach, POBO synthesizes a surrogate function to
find a safe and efficient configuration to maximize the reward (resource utilization) while guaranteeing minimal constraint violations
(SLAs).

Learning: When a 𝑐𝑡−type microservice request arrives, we construct optimistic/pessimistic estimation for the reward/constraints
functions via UCB/LCB learning with the GP parameters 𝛩𝑓

𝑡 , 𝛩𝑔
𝑡 , and 𝛩𝐺

𝑡

𝑓 (𝑐𝑡, 𝑥) =
[

𝜇𝑓
𝑡 (𝑐𝑡, 𝑥) + 𝛽𝑓𝑡 𝜎

𝑓
𝑡 (𝑐𝑡, 𝑥)

]𝐵𝑓

−𝐵𝑓
, (7)

𝑔̌(𝑐𝑡, 𝑥) =
[

𝜇𝑔
𝑡 (𝑐𝑡, 𝑥) − 𝛽𝑔𝑡 𝜎

𝑔
𝑡 (𝑐𝑡, 𝑥)

]𝐵𝑔
−𝐵𝑔

, (8)

𝐺̌(𝑐𝑡, 𝑥) =
[

𝜇𝐺
𝑡 (𝑐𝑡, 𝑥) − 𝛽𝐺𝑡 𝜎

𝐺
𝑡 (𝑐𝑡, 𝑥)

]𝐵𝐺
−𝐵𝐺

. (9)

The [𝑧]ℎ𝑙 is the projection operator such that 𝑧 is within the interval of [𝑙, ℎ]. The optimistic–pessimistic design is to encourage
exploration and to avoid over-pessimistic decisions during the initial period.

Decision: Based on the learned 𝑓 (𝑐𝑡, 𝑥), 𝑔̌(𝑐𝑡, 𝑥), and 𝐺̌(𝑐𝑡, 𝑥), POBO utilizes primal–dual and penality-based optimization in
designing a single surrogate function in Eq. (10). Specifically in Eq. (10), we have the dual variable 𝑄𝑡 with 𝑔̌(𝑐, 𝑥) and the penalty
factor 𝑄̂𝑡 with 𝐺̌(𝑐, 𝑥) to control the system-wide latency violation and tail latency violation, respectively. Moreover, the adaptive
learning rates 𝑉𝑡 in POBO can establish a good trade-off between resource efficiency and SLA violation.

Update: After the configuration 𝑥𝑡 is deployed for the 𝑐𝑡− request, we observe the noisy feedback of reward 𝑟𝑡(𝑐𝑡, 𝑥𝑡) and SLA
violation 𝑣𝑡(𝑐𝑡, 𝑥𝑡) and 𝑤𝑡(𝑐𝑡, 𝑥𝑡), if 𝑐𝑡 is a priority request (i.e., 𝑐𝑡 ∈ 𝑝). These observations are used to update GP models according
to (4)–(6) (called a learning strategy ) and the dual variable 𝑄𝑡 in Eq. (11) and the penalty variable 𝑄̂𝑡 in Eq. (12). Intuitively,
the dual and penalty variables increase when the resource 𝑥𝑡 is not sufficient to support the SLA, which in turn serves as indicators
for future configuration.

We summarize POBO in the following and then provide the underlying intuition.

POBO Framework

Initialization: 𝑄1 = 0, 𝑄̂1 = 1, 𝑉𝑡 =
𝛿
√

𝑡
8𝐵𝑓

, 𝜀𝑡 =
6𝛽𝑔𝑇

√

𝛾𝑔𝑇 +2
√

𝑡
, 𝜂𝑡 = 𝑡, 𝛩𝑓

1 , 𝛩𝑔
1 and 𝛩𝐺

1 .
For 𝑡 = 1,⋯ , 𝑇 ,

• Pessimistic–optimistic learning: observe a 𝑐𝑡-type microservice request, estimate the reward function 𝑓𝑡(𝑐, 𝑥) and the cost
function 𝑔̌𝑡(𝑐, 𝑥), 𝐺̌𝑡(𝑐, 𝑥) according to GP-UCB/LCB with (𝛩𝑓

𝑡 , 𝛩
𝑔
𝑡 , 𝛩

𝐺
𝑡) in (7)-(9).

• Rectified penalty-based decision: select a configuration 𝑥𝑡 such that

argmax
𝑥∈

𝑓𝑡(𝑐𝑡, 𝑥) −
𝑄𝑡𝑔̌𝑡(𝑐𝑡, 𝑥)

𝑉𝑡
− 𝑄̂𝑡𝐺̌

+
𝑡 (𝑐𝑡, 𝑥)I{𝑐𝑡 ∈ 𝑝} (10)

• Feedback: noisy reward 𝑟𝑡(𝑐𝑡, 𝑥𝑡), SLA violations 𝑣𝑡(𝑐𝑡, 𝑥𝑡) and 𝑤𝑡(𝑐𝑡, 𝑥𝑡) if 𝑐𝑡 is a priority request (i.e. 𝑐𝑡 ∈ 𝑝).
• Dual update:

𝑄 =
(

𝑄 + 𝑔̌ (𝑐 , 𝑥) + 𝜀
)+ . (11)
6

𝑡+1 𝑡 𝑡 𝑡 𝑡 𝑡

Performance Evaluation 162 (2023) 102376H. Guo et al.
• Penalty update:

𝑄̂𝑡+1 = max
(

𝑄̂𝑡 + (𝑤𝑡(𝑐𝑡, 𝑥𝑡))+I{𝑐𝑡 ∈ 𝑝}, 𝜂𝑡
)

. (12)

• Model update:

𝛩𝑓
𝑡+1 =  (𝛩𝑓

𝑡 ,{𝑐𝑡, 𝑥𝑡, 𝑟𝑡}), 𝛩
𝑔
𝑡+1 =  (𝛩𝑔

𝑡 , {𝑐𝑡, 𝑥𝑡, 𝑣𝑡}), 𝛩
𝐺
𝑡+1 =  (𝛩𝐺

𝑡 , {𝑐𝑡, 𝑥𝑡, 𝑤𝑡}).

We provide the intuition behind POBO. Recall the offline problem in (1)–(3), we decompose it into the problem for an individual
request (𝑐𝑡-type request) at every period

max
𝑥∈

𝑓 (𝑐𝑡, 𝑥)

s.t. 𝑔(𝑐𝑡, 𝑥) ≤ 0,

𝐺(𝑐𝑡, 𝑥) ≤ 0, ∀𝑐𝑡 ∈ 𝑝.

The problem above can be solved by optimizing the Lagrange function

𝐿(𝑐𝑡, 𝑥, 𝜆, 𝜗) ∶= 𝑓 (𝑐𝑡, 𝑥) − 𝜆𝑔(𝑐𝑡, 𝑥) − 𝜗𝐺(𝑐𝑡, 𝑥),

where 𝜆 and 𝜗 are the dual variables corresponding to the constraint functions 𝑔 and 𝐺, respectively. As the constraint function 𝐺
has priority and is supposed to be satisfied for every request, we impose a rectified operator on 𝐺+ to induce a feasible decision
for the 𝐺 function. The dual variables 𝜆 and 𝜗 are approximated with 𝑄𝑡∕𝑉𝑡 (a scaled version of 𝑄𝑡) and 𝑄̂𝑡, respectively. Since
all functions are unknown and approximated via Gaussian processes, we use an optimistic version 𝑓𝑡(𝑐, 𝑥) of 𝑓 (𝑐, 𝑥) and pessimistic
version 𝑔̌(𝑐, 𝑥) and 𝐺̌(𝑐, 𝑥) of 𝑔(𝑐, 𝑥) and 𝐺(𝑐, 𝑥). Combine all these ingredients, we finally have the surrogate function

𝐿(𝑐𝑡, 𝑥, 𝜆, 𝜗) ∶= 𝑓 (𝑐𝑡, 𝑥) −
𝑄𝑡𝑔̌(𝑐𝑡, 𝑥)

𝑉𝑡
− 𝑄̂𝑡𝐺

+(𝑐𝑡, 𝑥).

The term 𝑄𝑡 is a proxy for the dual variable 𝜆 and captures the constraint violation 𝑔 function in the long term. Its update is

𝑄𝑡+1 =
(

𝑄𝑡 + 𝑔̌𝑡(𝑐𝑡, 𝑥𝑡) + 𝜀𝑡
)+ .

Intuitively, a positive value of 𝑄𝑡 indicates the system-wide latency violates until the period 𝑡. We add an extra term 𝜀𝑡 such that
the decision becomes slightly conservative to satisfy the average system-wide constraints. The term 𝑄̂𝑡 is a strict proxy for the dual
variable 𝜗 and captures the anytime violation 𝐺 function for every control period, its update is

𝑄̂𝑡+1 = max
(

𝑄̂𝑡 + (𝑤𝑡(𝑐𝑡, 𝑥𝑡))+I{𝑐𝑡 ∈ 𝑝}, 𝜂𝑡
)

.

The value of 𝑄̂𝑡 keeps increasing as long as the tail latency violates at a period. Note we also add an extra term 𝜂𝑡, which imposes
at least the amount of 𝜂𝑡 penalty for the period 𝑡 and forces the decision to satisfy the tail latency constraint. Moreover, the learning
rate 𝑉𝑡 is designed to control the tradeoff between regret and constraint violation in Theorem 1.

4. Theoretical analysis

In this section, we present the theoretical analysis of POBO for microservice resource management. We first define the
information gain at period 𝑡 to be 𝛾𝑓𝑡 ∶= max𝑡∈∶|𝑡|=𝑡−1

1
2 ln |𝐼 + 𝜆−1𝐾𝑓

𝑡 |, 𝛾𝑔𝑡 ∶= max𝑡∈∶|𝑡|=𝑡−1
1
2 ln |𝐼 + 𝜆−1𝐾𝑔

𝑡 | and 𝛾𝐺𝑡 ∶=
max𝑡∈∶|𝑡|=𝑡−1

1
2 ln |𝐼 + 𝜆−1𝐾𝐺

𝑡 |, which are important parameters in GP learning. They depend on the choice of the kernel function
and the domain  , and would play a key role in our following regret and violation analysis. For SE kernel function, we have 𝛾𝑓𝑡 , 𝛾𝑔𝑡
and 𝛾𝐺𝑡 are 𝑂((ln(𝑡))𝑑+1) if  is compact and convex with dimension 𝑑.

Next, we establish the regret, average violation for the system-wide latency constraint, and cumulative violation for the tail
latency constraint.

Regret and constraint violation: Recall the offline optimization problem (1)–(3) in Section 2, given the complete knowledge
of (1)–(3), we can compute its optimal solution 𝑥∗, which is used to define regret and constraint violation in the following

(𝑇) ∶= 𝑇𝑓 (𝑐, 𝑥∗) − E

[𝑇
∑

𝑡=1
𝑓 (𝑐𝑡, 𝑥𝑡)

]

, (13)

𝑎𝑣𝑒(𝑇) ∶= E

[𝑇
∑

𝑡=1
𝑔(𝑐𝑡, 𝑥𝑡)

]

, (14)

𝑡𝑎𝑖𝑙(𝑇) ∶= E

[𝑇
∑

𝑡=1
𝐺+(𝑐𝑡, 𝑥𝑡)I{𝑐𝑡 ∈ 𝑝}

]

. (15)

Note (15) is a strict metric dedicated to latency-sensitive (priority) requests because a small cumulative violation implies satisfactory
tail latency for almost every priority request. Our goal is to show POBO achieves sublinear regret and violation, i.e.,

lim
𝑇→∞

(𝑇)∕𝑇 = 0, lim
𝑇→∞

𝑎𝑣𝑒(𝑇)∕𝑇 = 0, and lim
𝑇→∞

𝑡𝑎𝑖𝑙(𝑇)∕𝑇 = 0.

To state our results, we first introduce the following assumptions.
7

Performance Evaluation 162 (2023) 102376H. Guo et al.

a
c

A
T

A
∀

i
n
t
i
p
p

w

a
p

a

Fig. 4. Proof sketch of Theorem 1.

Assumption 1. Let ‖ ⋅‖𝑘 denote the RKHS norm associated with a kernel 𝑘. For the reward function 𝑓 , we assume that ‖𝑓‖𝑘𝑓 ≤ 𝐵𝑓
nd 𝑘𝑓 (𝑐, 𝑥, 𝑥) ≤ 1 for any 𝑥 ∈  . For the constraint function 𝑔, we assume ‖𝑔‖𝑘𝑔 ≤ 𝐵𝑔 and 𝑘𝑔(𝑐, 𝑥, 𝑥) ≤ 1 for any 𝑥 ∈  . For the
onstraint function 𝐺, we assume ‖𝐺‖𝑘𝐺 ≤ 𝐵𝐺 and 𝑘𝐺(𝑐, 𝑥, 𝑥) ≤ 1 for any 𝑥 ∈  .

ssumption 2. The noise 𝜂𝑡 is i.i.d. 𝑅𝑓 -sub-Gaussian, the noise 𝜉𝑡 is i.i.d. 𝑅𝑔-sub-Gaussian and the noise 𝜏𝑡 is i.i.d. 𝑅𝐺-sub-Gaussian.
he noise 𝜂𝑡, 𝜉𝑡, and 𝜏𝑡 are bounded by constants 𝑁𝑓 , 𝑁𝑔 , and 𝑁𝐺, respectively.

ssumption 3. There is a constant 𝛿 > 0 such that there exists a probability distribution 𝜋0 that satisfies ∫𝑥∈ 𝑔(𝑐, 𝑥)𝜋0(𝑥)𝑑𝑥 ≤ −𝛿,
𝑐 ∈  and ∫𝑥∈ 𝐺(𝑐, 𝑥)𝜋0(𝑥)𝑑𝑥 ≤ 0, ∀𝑐 ∈ 𝑝. We assume 𝛿 ≤ 1.

Assumption 1 imposes the continuous and bounded condition on the black-box functions to guarantee they are learnable, which
s typically mild and usually true in the microservice system as shown in Fig. 1(a). Assumption 2 is a common assumption for the
oisy observation, and the noise is assumed bounded for the simplicity of presentation. Assumption 3 is standard Slater’s condition in
he optimization literature, which is used to derive an upper bound of violation 𝑎𝑣𝑒(𝑇) for the system-wide latency. This assumption
s necessary because it requires a feasible configuration to strictly satisfy the latency constraints, which reflects the reality of the
ractical system since the resource configuration optimization could be impossible without the assumption. Moreover we define the
arameters of GPs 𝛽𝑓𝑡 = 𝐵𝑓 +𝑅𝑓

√

2(𝛾𝑓𝑡 + 1 + ln (3∕𝑝)), 𝛽𝑔𝑡 = 𝐵𝑔 +𝑅𝑔

√

2(𝛾𝑔𝑡 + 1 + ln (3∕𝑝)) and 𝛽𝑔𝑡 = 𝐵𝐺 +𝑅𝐺

√

2(𝛾𝐺𝑡 + 1 + ln (3∕𝑝)) with
𝑝 ∈ (0, 1).

Next, we present our main results of the POBO algorithm in Theorem 1.

Theorem 1. Under Assumptions 1–3, POBO achieves the following regret and constraint violations bound:

(𝑇) = 𝑂(𝛾𝑇
√

𝑇), 𝑎𝑣𝑒(𝑇) = 𝑂(1), 𝑡𝑎𝑖𝑙(𝑇) = 𝑂(𝛾𝑇
√

𝑇),

here 𝛾𝑇 = 𝑚𝑎𝑥(𝛾𝑓𝑇 , 𝛾
𝑔
𝑇 , 𝛾

𝐺
𝑇).

The theorem shows POBO achieves 𝑂(𝛾𝑇
√

𝑇) regret and ‘‘the best of two worlds’’ in constraint violation: 𝑂(1) average violation
s in [14] and 𝑂(𝛾𝑇

√

𝑇) cumulative violation as in [14]. The constant average violation indicates that the resource configuration
olicy 𝑥1, 𝑥2,… , 𝑥𝑇−1, 𝑥𝑇 ensures the received requests can be completed under SLA over periods 𝑇 . Meanwhile, 𝑂(𝛾𝑇

√

𝑇) cumulative
violation indicates that tail latency requirements are strictly satisfied for almost every latency-sensitive request. Next, we prove the
results in Theorem 1, and for a better picture, we first provide a roadmap in Fig. 4.

Remark 1. Recall that the definition 𝐺+(𝑐𝑡, 𝑥𝑡) denotes the violation of tail latency for the request 𝑐𝑡 with the configuration 𝑥𝑡. The
result of 𝑡𝑎𝑖𝑙(𝑇) = 𝑂(

√

𝑇) implies the violation per request is 𝑂(1∕
√

𝑇). In other words, it means the tail latency requirement can
lways be satisfied under our algorithm for every request with a large 𝑇 .

4.1. Regret bound

To prove the regret in Theorem 1, we introduce a stronger baseline than 𝑥∗ in Section 2. Specifically, we define 𝜋 as a distribution
over the action set  , and let 𝜋∗ be the optimal solution to the following offline problem:

max E
[

𝑓 (𝑐, 𝑥)𝜋(𝑥)𝑑𝑥
]

(16)
8

𝜋 ∫𝑥∈

Performance Evaluation 162 (2023) 102376H. Guo et al.

w

s.t. E
[

∫𝑥∈
𝑔(𝑐, 𝑥)𝜋(𝑥)𝑑𝑥

]

≤ 0, (17)

∫𝑥∈
𝐺+(𝑐, 𝑥)𝜋(𝑥)𝑑𝑥 = 0, ∀𝑐 ∈ 𝑝. (18)

It is straightforward to have the following inequality

(𝑇) ≤ +(𝑇) ∶= E

[

𝑇 ∫𝑥∈
𝑓 (𝑐, 𝑥)𝜋∗(𝑥)𝑑𝑥 −

𝑇
∑

𝑡=1
𝑓 (𝑐𝑡, 𝑥𝑡)

]

. (19)

Further, we consider a tight problem corresponding to (16)–(18) with the tightness constant 0 ≤ 𝜀 ≤ 𝛿 that

max
𝜋

E
[

∫𝑥∈
𝑓 (𝑐, 𝑥)𝜋(𝑥)𝑑𝑥

]

(20)

s.t. E
[

∫𝑥∈
𝑔(𝑐, 𝑥)𝜋(𝑥)𝑑𝑥

]

+ 𝜀 ≤ 0, (21)

∫𝑥∈
𝐺+(𝑐, 𝑥)𝜋(𝑥)𝑑𝑥 = 0, ∀𝑐 ∈ 𝑝. (22)

Let 𝜋𝜀𝑡
∗ be the optimal solution to the above tight problem (20)–(22) with 𝜀 = 𝜀𝑡. We decompose the cumulative regret in the

following:

+(𝑇) = E

[

𝑇 ∫𝑥∈
𝑓 (𝑐, 𝑥)𝜋∗(𝑥)𝑑𝑥 −

𝑇
∑

𝑡=1
𝑓 (𝑐𝑡, 𝑥𝑡)

]

= E

[𝑇
∑

𝑡=1
∫𝑥∈

𝑓 (𝑐𝑡, 𝑥)𝜋∗(𝑥)𝑑𝑥 − ∫𝑥∈
𝑓 (𝑐𝑡, 𝑥)𝜋

𝜀𝑡
∗ (𝑥)𝑑𝑥

]

(23)

+ E

[𝑇
∑

𝑡=1
∫𝑥∈

(𝑓 (𝑐𝑡, 𝑥) − 𝑓𝑡(𝑐𝑡, 𝑥))𝜋
𝜀𝑡
∗ (𝑥)𝑑𝑥

]

(24)

+ E

[𝑇
∑

𝑡=1
∫𝑥∈

𝑓𝑡(𝑐𝑡, 𝑥)𝜋
𝜀𝑡
∗ (𝑥)𝑑𝑥 − 𝑓𝑡(𝑐𝑡, 𝑥𝑡)

]

(25)

+ E

[

∑

𝑡=1
𝑓𝑡(𝑐𝑡, 𝑥𝑡) − 𝑓 (𝑐𝑡, 𝑥𝑡)

]

, (26)

The term (23) is on the difference between the optimal offline problem and its 𝜖−tightness version. The terms (24) and (26) are
on the learning errors of GP-UCB. The term (25) is the most challenging one, which can be established by the key property in
Lemma 8. We then present a sequence of lemmas to bound the terms (23)–(26), respectively. The proof of all these lemmas can be
found in Appendix.

Lemma 1. Under POBO, we have

E

[𝑇
∑

𝑡=1
∫𝑥∈

𝑓𝑡(𝑐𝑡, 𝑥)𝜋
𝜀𝑡
∗ (𝑥)𝑑𝑥 − 𝑓𝑡(𝑐𝑡, 𝑥𝑡)

]

= 𝑂

(𝑇
∑

𝑡=1

1
𝑉𝑡

)

.

Lemma 2. Under Assumptions 1–3, we can bound the difference between the baseline optimization problem and its tightened version:

E

[𝑇
∑

𝑡=1
∫𝑥∈

𝑓 (𝑐𝑡, 𝑥)𝜋∗(𝑥)𝑑𝑥 − ∫𝑥∈
𝑓 (𝑐𝑡, 𝑥)𝜋

𝜀𝑡
∗ (𝑥)𝑑𝑥

]

= 𝑂

(𝑇
∑

𝑡=1
𝜀𝑡

)

Lemma 3. Under POBO, the GP-UCB estimator for reward 𝑓 satisfies that

E

[

∑

𝑡=1
𝑓𝑡(𝑐𝑡, 𝑥𝑡) − 𝑓 (𝑐𝑡, 𝑥𝑡)

]

= 𝑂
(

𝛾𝑓𝑇
√

𝑇
)

,

E

[𝑇
∑

𝑡=1
∫𝑥∈

(𝑓 (𝑐𝑡, 𝑥) − 𝑓𝑡(𝑐𝑡, 𝑥))𝜋
𝜀𝑡
∗ (𝑥)𝑑𝑥

]

= 𝑂(1).

Given the above lemmas and recalling the values of learning rates 𝑉𝑡 and 𝜀𝑡, we have:

+(𝑇) = 𝑂

(𝑇
∑

𝑡=1

1
𝑉𝑡

+
𝑇
∑

𝑡=1
𝜀𝑡 + 𝛾𝑇

√

𝑇 + 1

)

, (27)

= 𝑂
(
√

𝑇 + 𝛾𝑇
√

𝑇 + 1
)

here 𝛾 = 𝑚𝑎𝑥(𝛾𝑓 , 𝛾𝑔 , 𝛾𝐺), which completes the proof of regret bound in Theorem 1.
9

𝑇 𝑇 𝑇 𝑇

Performance Evaluation 162 (2023) 102376H. Guo et al.

w

w

L

4.2. Average latency violation bound

Then, we establish the average latency violation 𝑎𝑣𝑒(𝑇) by bounding 𝑄𝑇+1. According to the update rule of 𝑄𝑡 in Eq. (11), we
have

𝑄𝑡+1 ≥ 𝑄𝑡 + 𝑔̌𝑡(𝑐𝑡, 𝑥𝑡) + 𝜀𝑡.

It implies that

𝑄𝑇+1 ≥
𝑇
∑

𝑡=1
𝑔̌𝑡(𝑐𝑡, 𝑥𝑡) +

𝑇
∑

𝑡=1
𝜀𝑡.

Therefore, we have

𝑎𝑣𝑒(𝑇) ∶= E

[𝑇
∑

𝑡=1
𝑔(𝑐𝑡, 𝑥𝑡)

]

=E

[𝑇
∑

𝑡=1
(𝑔(𝑐𝑡, 𝑥𝑡) − 𝑔̌𝑡(𝑐𝑡, 𝑥𝑡))

]

+ E

[𝑇
∑

𝑡=1
𝑔̌𝑡(𝑐𝑡, 𝑥𝑡)

]

≤E

[𝑇
∑

𝑡=1
(𝑔(𝑐𝑡, 𝑥𝑡) − 𝑔̌𝑡(𝑐𝑡, 𝑥𝑡))

]

+ E[𝑄𝑇+1] −
𝑇
∑

𝑡=1
𝜀𝑡, (28)

The first term in (28) is on the learning errors of GP-LCB, which can be bounded similarly as in the regret analysis.

Lemma 4. Under POBO, the GP-LCB estimator for constraint 𝑔 satisfies that

E

[𝑇
∑

𝑡=1
𝑔𝑡(𝑐𝑡, 𝑥𝑡) − 𝑔̌(𝑐𝑡, 𝑥𝑡)

]

= 𝑂(𝛾𝑔𝑇
√

𝑇),

For the virtual queue 𝑄𝑡+1, we use the Lyapunov drift analysis by the key property in Lemma 8 and establish the following
lemma.

Lemma 5. Under POBO, for 𝑡 ≥ 𝑇 ′ we have

E[𝑄𝑡] ≤
12(𝐵𝑔 + 1)2

𝛿
log

(8(𝐵𝑔 + 1)
𝛿

)

+ (𝐵𝑔 + 1)

+
4(2𝐵𝑓𝑉𝑡 + (𝐵2

𝑔 + 𝜀2𝑡))

𝛿
+ 𝐵𝑔𝑇

′ +
𝑇 ′
∑

𝑡=1
𝜀𝑡,

here 𝑇 ′ is the first period that satisfies 𝜀𝑇 ′ ≤ 𝛿
2 .

Since 𝑇 ′ is relatively small compared to the value of 𝜀𝑡, we prove that for any time violation by carefully choosing 𝑉𝑡 =
𝛿
√

𝑡
8𝐵𝑓

and

𝜀𝑡 =
6𝛽𝑔𝑇

√

𝛾𝑔𝑇 +2
√

𝑡
such that

𝑎𝑣𝑒(𝑇) ≤ E

[𝑇
∑

𝑡=1
(𝑔(𝑐𝑡, 𝑥𝑡) − 𝑔̌𝑡(𝑐𝑡, 𝑥𝑡))

]

+ E[𝑄𝑇+1] −
𝑇
∑

𝑡=1
𝜀𝑡 = 𝑂

(

1 + 𝑉𝑡 −
𝑇
∑

𝑡=1
𝜀𝑡

)

= 𝑂(1).

This proves the constant average violation for the system-level latency in Theorem 1. From the regret analysis in (27) and the
violation analysis above, we observe that the appropriate choice of 𝜀𝑡 is the key to the trade-off between the regret and the average
constraint violation. This idea has been widely used in online learning literature [19] to establish a tight bound for average constraint
violation.

4.3. Tail latency violation bound

Finally, we study the cumulative violation for tail latency. We first decompose the violation 𝑡𝑎𝑖𝑙(𝑇) in the following

𝑡𝑎𝑖𝑙(𝑇) ∶= E

[𝑇
∑

𝑡=1
𝐺+(𝑐𝑡, 𝑥𝑡)I{𝑐𝑡 ∈ 𝑝}

]

≤ E

[𝑇
∑

𝑡=1
𝐺̌+
𝑡 (𝑐𝑡, 𝑥𝑡)I{𝑐𝑡 ∈ 𝑝}

]

+ E

[𝑇
∑

𝑡=1
(𝐺(𝑐𝑡, 𝑥𝑡) − 𝐺̌𝑡(𝑐𝑡, 𝑥𝑡))+I{𝑐𝑡 ∈ 𝑝}

]

. (29)

The first term on the cumulative violation of GP-LCB estimator 𝐺̌𝑡(𝑐𝑡, 𝑥𝑡), which can be established by the key property in Lemma 8
ith properly choosing the learning rate 𝜂𝑡 in POBO.

emma 6. Under POBO, we have

E

[𝑇
∑

𝐺̌+
𝑡 (𝑐𝑡, 𝑥𝑡)I{𝑐𝑡 ∈ 𝑝}

]

= 𝑂(
√

𝑇).
10

𝑡=1

Performance Evaluation 162 (2023) 102376H. Guo et al.

v
a

To translate the total violation of 𝐺̌𝑡(𝑐𝑡, 𝑥𝑡) into that of the original constraint function 𝐺𝑡(𝑐𝑡, 𝑥𝑡), we quantify the estimation errors
between 𝐺𝑡 and 𝐺̌𝑡.

Lemma 7. Under POBO, the GP-LCB estimator for tail latency constraint 𝐺 satisfies that

E

[𝑇
∑

𝑡=1
(𝐺(𝑐𝑡, 𝑥𝑡) − 𝐺̌𝑡(𝑐𝑡, 𝑥𝑡))I{𝑐𝑡 ∈ 𝑝}

]

≤ 4𝛽𝐺𝑇
√

4(𝑇 + 2)𝛾𝐺𝑇 .

Combining these two lemmas, and we have

𝑡𝑎𝑖𝑙(𝑇) = 𝑂(𝛽𝐺𝑇
√

𝛾𝐺𝑇 𝑇),

which completes the proof of the tail latency violation bound in Theorem 1 by 𝛽𝐺𝑇 = 𝑂(
√

𝛾𝐺𝑇).

4.4. A key property and sketch of proof

Lemmas 1, 5, and 6 are the keys to establishing the regret, average violation, and cumulative violation, respectively. We
introduce a crucial property to bridge the regret and constraint violations based on the Lyapunov drift analysis [20] that integrates
the penalized constraint function. Intuitively, the property implies an upper bound for ‘‘regret + cumulative violation + average
violation’’ as a whole and provides a unified analysis for these lemmas. We define the Lyapunov function and its drift to be

𝐿(𝑡) = 1
2
𝑄2

𝑡 and 𝛥(𝑡) = 𝐿(𝑡 + 1) − 𝐿(𝑡).

Lemma 8 (A Key Property). Under POBO, for any policy 𝜋, the following inequality holds
𝛥(𝑡)
𝑉𝑡

+ 𝑄̂𝑡𝐺̌
+
𝑡 (𝑐𝑡, 𝑥𝑡)I{𝑐𝑡 ∈ 𝑝} + ∫𝑥∈

𝑓𝑡(𝑐𝑡, 𝑥)𝜋(𝑥)𝑑𝑥 − 𝑓𝑡(𝑐𝑡, 𝑥𝑡)

≤
𝑄𝑡
𝑉𝑡 ∫𝑥∈

(𝑔̌𝑡(𝑐𝑡, 𝑥) + 𝜀𝑡)𝜋(𝑥)𝑑𝑥 + 𝑄̂𝑡 ∫𝑥∈
𝐺̌+
𝑡 (𝑐𝑡, 𝑥)I{𝑐𝑡 ∈ 𝑝}𝜋(𝑥)𝑑𝑥 +

(𝐵2
𝑔 + 𝜀2𝑡)

𝑉𝑡
. (30)

Lemma 8 suggests ‘‘Lyapunov drift + instantaneous violation + instantaneous regret’’ is bounded by the constraints violation
associated with a policy 𝜋, from which we can individually analyze the regret (𝑇), average violation 𝑎𝑣𝑒(𝑡), and cumulative
iolation 𝑡𝑎𝑖𝑙(𝑡) in Theorem 1. Next, we outline the key steps in proving Lemmas 1, 5, and 6 with the inequality (31) in Lemma 8
nd the detailed proof can be found in Appendix. For a simple exposition, we consider a fixed learning rate 𝑉𝑡 = 𝑉 = 𝑂(

√

𝑇), 𝜂𝑡 =
𝑇 ,∀𝑡 ∈ [𝑇].

• For Lemma 1 on the analysis of regret, we establish the instantaneous regret from (31)

∫𝑥∈
𝑓𝑡(𝑐𝑡, 𝑥)𝜋(𝑥)𝑑𝑥 − 𝑓𝑡(𝑐𝑡, 𝑥𝑡) ≤ −

𝛥(𝑡)
𝑉

+
𝑄𝑡
𝑉 ∫𝑥∈

(𝑔̌𝑡(𝑐𝑡, 𝑥) + 𝜀𝑡)𝜋(𝑥)𝑑𝑥

+ 𝑄̂𝑡 ∫𝑥∈
𝐺̌+
𝑡 (𝑐𝑡, 𝑥)I{𝑐𝑡 ∈ 𝑝}𝜋(𝑥)𝑑𝑥 +

(𝐵2
𝑔 + 𝜀2𝑡)

𝑉
,

which implies the regret (𝑇) = 𝑂(𝑇 ∕𝑉) = 𝑂(
√

𝑇) by summing 𝑡 from 1 to 𝑇 , because the first term ∑𝑇
𝑡=1 −

𝛥(𝑡)
𝑉 = 𝐿(1)−𝐿(𝑇)

𝑉 ≤ 0
and 𝜋(𝑥) is a feasible policy such that the violation in the second and third terms are non-positive.

• For Lemma 5 on the analysis of average violation, we have the Lyapunov drift from (31)

𝛥(𝑡) ≤ 𝑉 𝑓𝑡(𝑐𝑡, 𝑥𝑡) − 𝑉 ∫𝑥∈
𝑓𝑡(𝑐𝑡, 𝑥)𝜋(𝑥)𝑑𝑥 +𝑄𝑡 ∫𝑥∈

(𝑔̌𝑡(𝑐𝑡, 𝑥) + 𝜀𝑡)𝜋(𝑥)𝑑𝑥

+ 𝑉 𝑄̂𝑡 ∫𝑥∈
𝐺̌+
𝑡 (𝑐𝑡, 𝑥)I{𝑐𝑡 ∈ 𝑝}𝜋(𝑥)𝑑𝑥 + (𝐵2

𝑔 + 𝜀2𝑡),

which implies a negative drift

𝛥(𝑡) ≤ − 𝛿
2
𝑄𝑡 + 𝑂(𝑉).

by realizing 𝜋(𝑥) is a strict feasible policy to the problem (16)–(18) such that ∫𝑥∈ (𝑔̌𝑡(𝑐𝑡, 𝑥) + 𝜀𝑡)𝜋(𝑥)𝑑𝑥 ≤ −𝛿∕2 and the fourth
term is zero. Therefore, according to the classical Lyapunov theory, we have E[𝑄𝑡] = 𝑂(𝑉 ∕𝛿).

• For Lemma 6 on the analysis of cumulative violation, we have the instantaneous violation from (31)

𝐺̌+
𝑡 (𝑐𝑡, 𝑥𝑡)I{𝑐𝑡 ∈ 𝑝} ≤ −

𝛥(𝑡)
𝑉 𝑄̂𝑡

+
𝑓𝑡(𝑐𝑡, 𝑥𝑡) − ∫𝑥∈ 𝑓𝑡(𝑐𝑡, 𝑥)𝜋(𝑥)𝑑𝑥

𝑄̂𝑡
+

𝑄𝑡

𝑉 𝑄̂𝑡
∫𝑥∈

(𝑔̌𝑡(𝑐𝑡, 𝑥) + 𝜀𝑡)𝜋(𝑥)𝑑𝑥

+ ∫𝑥∈
𝐺̌+
𝑡 (𝑐𝑡, 𝑥)I{𝑐𝑡 ∈ 𝑝}𝜋(𝑥)𝑑𝑥 +

(𝐵2
𝑔 + 𝜀2𝑡)

𝑉 𝑄̂𝑡
.

By carefully choosing the penalty factor 𝜂𝑡 in 𝑄̂𝑡 and realizing 𝜋(𝑥) is a feasible policy such that its violation in the fourth term
is zero, we establish ∑𝑇 𝐺̌+(𝑐 , 𝑥)I{𝑐 ∈  } = 𝑂(𝑉) = 𝑂(

√

𝑇).
11

𝑡=1 𝑡 𝑡 𝑡 𝑡 𝑝

Performance Evaluation 162 (2023) 102376H. Guo et al.

e
6
e
l

5

d
a
m
a
t

c

5. Experimental evaluation

In this section, we present our experimental evaluation. We have implemented a prototype of POBO and conducted the
xperiments on a container cluster on a host equipped with a 2.5 GHz Intel i7-11700 CPU along with 32 GB memory and runs
4-bit Ubuntu 18.04. We first introduce our implementation details, followed by evaluation methodology, and then discuss the
xperimental results. Lastly, we discuss POBO’s scalability, generalizability, and kernel selection in the latency–resource function
earning. The code to replicate our experiments is available at https://github.com/caohch-1/POBO.

.1. Implementation

Containerization: We use the Docker Desktop [21] as the containerization engine to install the necessary software with their
ependencies for each container. Docker ensures that the target image is pulled to deliver the unit service for each container within
deployment. We leverage the commonly used container orchestration platform Kubernetes [22] to deploy, scale, and manage
icroservice applications. When we set up a microservice application, Kubernetes interacts with Docker to create a pool of pods

nd their containers within each deployment. For example, for the login service, 30 pods are created with a specification on how
o run the containers, and 30 containers of the pods are created with the login image pulled.

Resource manager: For the resource manager, we implement the pod number controller by leveraging the Kubernetes Python
lient [23]. In our experiment, each pod consists of only one container. Each pod is configured with a 0.03 CPU core and 150MB of

memory. By adjusting the number of pods, we can change the amounts of resources based on the determined resource configuration.
Benchmarking microservice and workload generator: We use the open-source microservice benchmark Deathstar [24] to

deploy the Hotel Reservation application. We use the commonly used HTTP benchmarking tool wrk2 [25] as the workload generator
to send three types of requests, i.e., login, search, and recommendation, to the application. Wrk2 provides APIs for setting different
thread numbers, HTTP connections, requests, and duration. We set the duration of each period to 30 s and the number of requests
to be sent during each period to 800 by using the exposed APIs.

Requests tracing: We use Jaeger [18] to implement end-to-end distributed tracing. POBO collects tracing data by leveraging
Jaeger’s exposed RESTful APIs that are instrumented in the functions of sending and receiving requests in the benchmarking
microservice application’s source code. Typically, we do not need to instrument the functions manually. Instead, developers provide
the tracing instrumentation for sending and receiving requests in most microservice applications for troubleshooting.

As mentioned in Section 3.2, we down-sample the tracing to reduce the runtime overhead. Jaeger supports the probabilistic
sampler to trace instrumented functions at a user-defined sampling rate. In our experiment, we set the sampling rate to 50%, which
means the instrumented application functions are traced with a probability of 50%.

5.2. Evaluation methodology

We present the evaluation metrics followed by the baseline methods and then introduce our experiment design.

5.2.1. Evaluation metrics
We study the metrics of resource usage and service-level agreements (SLAs). For resource usage, we consider the average

number of pods used to process a batch of requests. For SLAs, we consider two types of metrics on SLAs, which are commonly
used in microservices [7]. The first one is the percentage of violated requests, where the violation means a request’s response
time exceeds the user-defined system-wide constraint. Ideally, the percentage of violated requests is low for a highly available
microservice application. In the experiment, we set the threshold of system-wide response time to be 300, 400, and 800 ms for
login, recommendation, and search, respectively. Those response time constraints vary in different environments, and our settings
reflect the typical response times for three types of requests in our experimental environment. The second SLA metric is the P90 tail
latency referring to the latency value below which 90% of requests’ response time falls. In the experiment, we set the requirements
of tail latency to be 400, 500, and 1000 ms for login, recommendation, and search, respectively. Still, the settings reflect the typical
tail latencies for requests in our environment.

5.2.2. Baseline methods
We compare POBO with the Kubernetes Auto-scaler [26] and the state-of-the-art algorithm CKB [14].
Horizontal Pod Autoscaler (HPA): Kubernetes provides two types of auto-scalers, which are Horizontal Pod Autoscaler (HPA)

and Vertical Pod Autoscaler (VPA). HPA is the scale-out method, meaning that we add more containers into the system, while VPA
is the scale-up method, meaning that we add more resources to a particular container. In this paper, we adopt a scale-out approach,
which is more popular in industrial cloud vendors. For scale-up approaches, containers must be restarted when the amount of
resources is changed. Therefore, compared with scale-up approaches, scale-out approaches usually incur fewer downtimes, matching
our design goal in the paper. Therefore, we compare POBO with the HPA method, which can automatically change the number of
pods in response to the fluctuation of resource consumption. HPA continuously monitors the CPU or memory utilization and scales
out/in the number of pods when the current metric value exceeds or falls below the target value. In particular, HPA provides a
configurable parameter, i.e., the target resource utilization. HPA calculates the ratio 𝛼 of the current resource utilization over the
target resource utilization during runtime. HPA sets the newly adjusted pod number to the rounded value of (𝛼× the current pod
12

number). In our experiment, we set the target CPU utilization to 60% by default.

https://github.com/caohch-1/POBO

Performance Evaluation 162 (2023) 102376H. Guo et al.

b
a

5

o
r
f
r
t
r
S

c
r
e
4

Fig. 5. Tail latency–resource function learning for single-type requests.

Table 1
Converged results with single-type requests.

Login Recommendation

of pods % of violated req. P90 latency (ms) # of pods % of violated req. P90 latency (ms)

POBO 11.73 1.08 305.51 15.77 0.53 414.25
CKB 16.38 2.18 323.84 20.17 2.46 518.61
HPA 6.00 3.18 520.99 6.00 3.39 998.62

CKB: CKB [14] used Gaussian processes to learn the latency–resource functions and leverages primal–dual optimization to trade-
off the resource usage and average violation instead of the cumulative violation. As CKB is designed to optimize the single-type
request, we modify it by using a similar decomposition in this paper such that it applies to multiple-type requests. The detailed
modification can be found in Appendix F.1.

As mentioned in the section of Introduction, RPOL [15] is another lightweight algorithm to solve safe BO. However, RPOL cannot
e applied in our setting because RPOL is only designed for SLA on the tail latency, while our setting considers SLAs on both the
verage system latency and the tail latency for critical requests. Further discussion can be found in Appendix F.2.

.2.3. Experiment design
We design two sets of experiments to verify the effectiveness of POBO and compare it with the baseline methods. For the first set

f experiments, we evaluate POBO and other baselines by using the three metrics described in Section 5.2.1 when only single-type
equests are received. To validate the performance of POBO’s Learning module, we then compare the estimated latency–resource
unctions with the ground-truth functions. To obtain the ground-truth latency–resource functions, we measure the 800 arrived
equests’ tail latencies with changing numbers of pods. To reduce the inaccuracy incurred by the heavy tails of latencies, we repeat
he experiment 10 times and show the average tail latency and the standard deviation at each pod number. Lastly, to verify the
obustness and adaptivity of POBO in the setting of single-type requests, we perform a sensitivity study by varying the threshold of
LAs.

For the second set of experiments, we evaluate POBO and other baselines when multiple-type requests are received. We first
onsider a setting where multiple-type requests arrive according to a stationary process. In detail, we consider the requests of login,
ecommendation, and search generated from two distributions, i.e., [20%, 20%, 60%] and [40%, 40%, 20%], respectively. We then
xperiment on a slow-changing non-stationary distribution of incoming requests whose probabilistic distribution starts from [40%,
0%, 20%] and ends with [20%, 20%, 60%] in 500 periods, where the step size of the change is [−0.04%,−0.04%, 0.08%]. Moreover,

to evaluate the effectiveness of POBO in a dynamic environment, we conduct experiments by running a co-located reservation
service simultaneously. Specifically, in each period, the arrival rate of the requests sent to the co-located service is randomly drawn
from {0, 10, 20, 30}. The distribution of login, recommendation, and search requests is [33%, 33%, 33%]. Overall, for multiple-type
requests, we investigate the robustness of POBO in the dynamic environment under non-stationary distributions of requests and
dynamic interference.

5.3. Result analysis

In this section, we introduce the experimental results of resource configuration for single-type requests and multiple-type requests.

5.3.1. Warm-up: Resource configuration for single-type requests
Latency–resource function learning: GP model is a powerful framework for learning black-box functions. Fig. 5 shows the

latency–resource function learned by the Gaussian process (GP) model, where we maintain individual GP models for each black-box
function. The mean of the GP model predicts the black-box function, while the variance denotes the level of uncertainty. In Figs. 5(a)–
5(c), the blue lines plot the mean of the GP models for P90 tail latency, while the light-shaded areas indicate the corresponding
13

Performance Evaluation 162 (2023) 102376H. Guo et al.

a
s
m
T
w
g
t
v

f

Fig. 6. Warm-up experiment with single-type requests: login (above) and recommendation (below).

Table 2
Converged results under different stationary distributions of requests.

Requests’ distribution (0.2, 0.2, 0.6) Requests’ distribution (0.4, 0.4, 0.2)

of pods % of violated req. P90 latency (ms) # of pods % of violated req. P90 latency (ms)

POBO 10.23 2.28 58.11 10.36 2.10 122.93
CKB 11.10 2.38 69.21 12.36 2.38 146.94
HPA 6.00 4.17 100.72 6.00 3.57 211.31

standard deviation for login, recommendation, and search requests, respectively. The results demonstrate that the function learned
by POBO closely approximates the ground truth. It is also interesting to observe that the variance of the GP models tends to be
larger when the number of pods is small. This observation is intuitive because POBO explores more frequently in configurations
with a larger number of pods, where it is more likely to satisfy the P90 tail latency constraints.

Resource usage and SLAs: Figs. 6(a)–6(c) and 6(d)–6(f) plot the average number of pods, percentage of violated requests,
nd tail latencies under HPA, CKB, and POBO for the login and recommendation requests, respectively. It is shown that HPA
uffers from a high percentage of violated requests and P90 tail latency as it determines the configuration based on the CPU or
emory consumption. POBO outperforms CKB w.r.t average pod usage, the percentage of violated requests, and P90 tail latency.
he converged results are summarized in Table 1. For the login and recommendation requests, POBO has a lower average pod usage
ith gaps of 4.65 and 4.40; a lower percentage of violated requests with gaps of 1.09% and 1.93%; and a better P90 latency with
aps of 18.34 and 104.36 ms. We also observe similar results for the search requests in Appendix F.4. These results demonstrate
hat POBO can efficiently find the optimal configuration of single-requests setting and consume fewer resources with minimal SLA
iolations.

Sensitivity study: Fig. 7 plots the performance for the login and recommendation requests with the tail latency requirements
rom the strict 400 milliseconds to the loose 1000 milliseconds. It is expected that HPA is unaware of SLAs and has a fixed

configuration. For the percentage of violated requests and tail latency, POBO outperforms CKB significantly when the threshold
is strict. These results verify that POBO is robust and adaptive to the varying SLA requirement on tail latency.

5.3.2. Resource configuration for multiple-type requests
Stationary requests: We consider the requests of login, recommendation, and search generated from two distributions,

i.e., [20%, 20%, 60%] and [40%, 40%, 20%], respectively. Figs. 8(a)–8(c) and 8(d)–8(f) plot the performance under HPA, CKB,
and POBO for the two distributions, respectively. It is shown that HPA again suffers from a high percentage of violated requests and
P90 tail latency. POBO outperforms CKB w.r.t average pod usage, the percentage of violated requests, and P90 tail latency for both
distributions. The converged results are summarized in Table 2. For the two distributions, POBO has a lower average pod usage
14

Performance Evaluation 162 (2023) 102376H. Guo et al.
Fig. 7. Sensitivity study with single-type requests.

Fig. 8. The experimental results two different stationary distributions of requests: [0.2, 0.2, 0.6] (above) and [0.4, 0.4, 0.2] (below).
15

Performance Evaluation 162 (2023) 102376H. Guo et al.

o
o
P
1
c
o
l
t
i

b
i
t
a
p

5

e
S
m
c

Fig. 9. The experimental results under a non-stationary traffic pattern with a fixed number of arrivals.

Fig. 10. The experimental results under a fixed arrival distribution with varying arrivals in [27].

with gaps of 0.87 and 2.00; a lower percentage of violated requests with the gaps 0.10% and 0.28%; and a better P90 latency with
the gaps 11.10 and 24.01 ms. These results demonstrate that POBO can quickly learn the workload statistics and converge to a safe
and optimal solution even without any initial knowledge of the environment.

Non-stationary requests: We consider two types of non-stationary traffic patterns: (1) a non-stationary arrival distribution with
a fixed total number of arrivals, and (2) a fixed arrival distribution with a varying number of arrivals. For the first traffic pattern,
the probabilistic distribution starts from [40%, 40%, 20%] and ends with [20%, 20%, 60%] in 500 periods, where the step size
f change is [−0.04%,−0.04%, 0.08%]. Fig. 9 shows that POBO still performs best even under non-stationary distributions. We focus
n comparing POBO with CKB as HPA fails to respond to the non-stationary environment. Fig. 9 shows the average pod usage of
OBO is 1.35 lower than CKB; the percentage of violated requests of POBO is 0.18 lower than CKB; the P90 tail latency of POBO is
8.26 ms lower than CKB. For the second traffic pattern, we test POBO with a daily workload pattern extracted from real-world data
ollected in the production environment [27]. As shown in Fig. F.19 in Appendix F.6, the traffic is highly non-stationary (including
riginal and interpolated data points). We plot the results in Fig. 10, and it is shown that the average pod usage of POBO is 2.78
ower than CKB; the percentage of violated requests of POBO is 0.85 lower than CKB; the P90 tail latency of POBO is 4.05 ms lower
han CKB. The experiments further demonstrate that POBO performs well even under non-stationary arrival requests and that POBO
s adaptive to the most effective policy with minimal resource usage and SLA violations.

Dynamic interference caused by co-located services. Fig. 11 shows that POBO is robust to dynamic interference and performs
etter than CKB and HPA. Similarly, we compare POBO with CKB in detail. As shown in Fig. 11(a), the average pod usage of POBO
s 1.16 lower than CKB. For the percentage of violated requests, as shown in Fig. 11(b), POBO is 0.06 lower than CKB. For P90
ail latency, as shown in Fig. 11(c), POBO is 15.39 ms lower than CKB. From these results, we observe that the online learning
nd decision design in POBO are adaptive and robust in a dynamic environment. POBO can achieve a smaller tail latency with the
enalty-based design for critical metrics.

.4. Extensions

Scalability of POBO: POBO can be extended easily when pods of one identical service are implemented on one server. For
xample, the pods of the login service are all implemented on Server 1, the pods of the search service are all implemented on
erver 2, etc. In this case, POBO can learn the latency–resource function well and give the optimal resource configuration without
odification. However, when pods of one particular service are implemented on different servers, the latency–resource function

annot be learned since the requests’ latencies are not solely based on the number of pods. For example, the login service is
16

Performance Evaluation 162 (2023) 102376H. Guo et al.

i
g
a

b
i
t

i
s

6

p
r
t
m
a

D

t

A

s
u

A

L

Fig. 11. The experimental results under dynamic interference caused by co-located services.

mplemented on Servers 1 and 2. The workload generator and Server 1 are connected by the LAN network, and the workload
enerator and Server 2 are connected by the WAN network. In this case, it is essential to consider various network conditions
mong multiple servers when learning login requests’ latencies.

Generalizability of POBO: POBO is a general framework and could be adaptive to other scenarios with slight modification
ecause it learns the black-box functions (e.g., the latency–resource functions) from scratch and adjusts the resource configuration
n real-time. For example, when the workloads are heavy-tailed, or the feedback suffers from large delay, we only need to customize
he design of learning modules in POBO to tackle the specific challenges.

Kernel selection for POBO: We use a Squared Exponential (SE) kernel for POBO based on the belief of inherent ‘‘smoothness’’
n our system (i.e., the latency–resource relation is smooth). POBO is also flexible to incorporate other types of kernel or dynamic
trategies of kernel selection to enhance the algorithm in the dynamic environment.

. Conclusion

In this paper, we study the problem of microservice resource management and propose POBO, a novel framework that integrates
essimistic and optimistic learning with primal–dual and penalty-based optimization. We prove that POBO achieves the sublinear
egret and average and cumulative violations. This implies that POBO can maximize resource efficiency while satisfying SLAs on
he system-wide latency and tail latency even without the knowledge of the environment. We implement POBO on a real-world
icroservice system. The experimental results demonstrate that it outperforms the state-of-the-art algorithm and is robust and

daptive to the non-stationary environment.

eclaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared
o influence the work reported in this paper.

cknowledgment

The authors would like to thank the anonymous reviewers and the shepherd for their valuable comments. The work was partly
upported by the Shanghai Sailing Program 22YF1428600 and 22YF1428500, the National Nature Science Foundation of China
nder grant 62302305.

ppendix A. A key property

emma 8 (A Key Property). Under POBO, for any policy 𝜋, the following inequality holds

𝛥(𝑡)
𝑉𝑡

+ 𝑄̂𝑡𝐺̌
+
𝑡 (𝑐𝑡, 𝑥𝑡)I{𝑐𝑡 ∈ 𝑝} + ∫𝑥∈

𝑓𝑡(𝑐𝑡, 𝑥)𝜋(𝑥)𝑑𝑥 − 𝑓𝑡(𝑐𝑡, 𝑥𝑡)

≤
𝑄𝑡 (𝑔̌𝑡(𝑐𝑡, 𝑥) + 𝜀𝑡)𝜋(𝑥)𝑑𝑥 + 𝑄̂𝑡 𝐺̌+(𝑐𝑡, 𝑥)I{𝑐𝑡 ∈ 𝑝}𝜋(𝑥)𝑑𝑥 +

(𝐵2
𝑔 + 𝜀2𝑡) . (31)
17

𝑉𝑡 ∫𝑥∈ ∫𝑥∈ 𝑡 𝑉𝑡

Performance Evaluation 162 (2023) 102376H. Guo et al.

A

L

L

w

L

Proof. Recall the decision Eq. (10) in POBO algorithm, 𝑥𝑡 is chosen such that

arg max
𝑥∈

𝑓𝑡(𝑐𝑡, 𝑥) −
𝑄𝑡𝑔̌𝑡(𝑐𝑡, 𝑥)

𝑉𝑡
− 𝑄̂𝑡𝐺̌

+
𝑡 (𝑐𝑡, 𝑥)I{𝑐𝑡 ∈ 𝑝}.

For any policy 𝜋, we have
𝑄𝑡𝑔̌𝑡(𝑐𝑡, 𝑥𝑡)

𝑉𝑡
+ 𝑄̂𝑡𝐺̌

+
𝑡 (𝑐𝑡, 𝑥𝑡)I{𝑐𝑡 ∈ 𝑝} − 𝑓𝑡(𝑐𝑡, 𝑥𝑡)

≤ − ∫𝑥∈
𝑓𝑡(𝑐𝑡, 𝑥)𝜋(𝑥)𝑑𝑥 +

𝑄𝑡
𝑉𝑡 ∫𝑥∈

𝑔̌𝑡(𝑐𝑡, 𝑥)𝜋(𝑥)𝑑𝑥 + 𝑄̂𝑡 ∫𝑥∈
𝐺̌+
𝑡 (𝑐𝑡, 𝑥)I{𝑐𝑡 ∈ 𝑝}𝜋(𝑥)𝑑𝑥.

Next, we associate the term of 𝑄𝑡𝑔̌𝑡(𝑐𝑡, 𝑥𝑡) with the Lyapunov drift. The Lyapunov drift is

𝛥(𝑡) = 𝐿(𝑡 + 1) − 𝐿(𝑡) = 1
2
𝑄2

𝑡+1 −
1
2
𝑄2

𝑡 .

Recall the update rule of 𝑄𝑡 in Eq. (11), we have

𝛥(𝑡) ≤ 1
2
(2𝑄𝑡 + 𝑔̌𝑡(𝑐𝑡, 𝑥𝑡) + 𝜀𝑡)(𝑔̌𝑡(𝑐𝑡, 𝑥𝑡) + 𝜀𝑡)

≤ 𝑄𝑡(𝑔̌𝑡(𝑐𝑡, 𝑥𝑡) + 𝜀𝑡) +
1
2
(𝑔̌𝑡(𝑐𝑡, 𝑥𝑡) + 𝜀𝑡)2

≤ 𝑄𝑡(𝑔̌𝑡(𝑐𝑡, 𝑥𝑡) + 𝜀𝑡) + (𝐵2
𝑔 + 𝜀2𝑡),

Rearranging the above inequality, we have

𝛥(𝑡) −𝑄𝑡𝜀𝑡 − (𝐵2
𝑔 + 𝜀2𝑡) ≤ 𝑄𝑡𝑔̌𝑡(𝑐𝑡, 𝑥𝑡).

Combine these results, we prove Lemma 8 as follows
𝛥(𝑡)
𝑉𝑡

+ 𝑄̂𝑡𝐺̌
+
𝑡 (𝑐𝑡, 𝑥𝑡)I{𝑐𝑡 ∈ 𝑝} − 𝑓𝑡(𝑐𝑡, 𝑥𝑡)

≤ − ∫𝑥∈
𝑓𝑡(𝑐𝑡, 𝑥)𝜋(𝑥)𝑑𝑥 +

𝑄𝑡
𝑉𝑡 ∫𝑥∈

𝑔̌𝑡(𝑐𝑡, 𝑥)𝜋(𝑥)𝑑𝑥 + 𝑄̂𝑡 ∫𝑥∈
𝐺̌+
𝑡 (𝑐𝑡, 𝑥)I{𝑐𝑡 ∈ 𝑝}𝜋(𝑥)𝑑𝑥

+
𝑄𝑡𝜀𝑡
𝑉𝑡

+
(𝐵2

𝑔 + 𝜀2𝑡)

𝑉𝑡
.

ppendix B. GP-UCB/LCB estimation errors

The errors of GP-UCB/LCB estimation are well established in [14,15,17,28]. We introduce GP-UCB/LCB estimate errors in
emma 9 and the accumulative deviation in Lemma 10. The proof of these two lemmas can be found in [17].

emma 9. Under Assumptions 1 and 2, the following event  hold for any 𝑥 ∈  and all 𝑡 ∈ [𝑇]

0 ≤ 𝑓𝑡(𝑐𝑡, 𝑥) − 𝑓 (𝑐𝑡, 𝑥) ≤ 2𝛽𝑓𝑡 𝜎
𝑓
𝑡 (𝑐𝑡, 𝑥),

0 ≤ 𝑔(𝑐𝑡, 𝑥) − 𝑔̌𝑡(𝑐𝑡, 𝑥) ≤ 2𝛽𝑔𝑡 𝜎
𝑔
𝑡 (𝑐𝑡, 𝑥),

0 ≤ 𝐺(𝑐𝑡, 𝑥) − 𝐺̌𝑡(𝑐𝑡, 𝑥) ≤ 2𝛽𝐺𝑡 𝜎
𝐺
𝑡 (𝑐𝑡, 𝑥),

ith probability at least 1 − 𝑝 with 𝑝 ∈ (0, 1).

emma 10. Let {𝑥1,… , 𝑥𝑇 } be the collection of decisions chosen by POBO. The cumulative standard deviation can be bounded as follows:
𝑇
∑

𝑡=1
𝛽𝑓𝑡 𝜎

𝑓
𝑡 (𝑐𝑡, 𝑥𝑡) ≤ 𝛽𝑓𝑇

√

4(𝑇 + 2)𝛾𝑓𝑇 ,

𝑇
∑

𝑡=1
𝛽𝑔𝑡 𝜎

𝑔
𝑡 (𝑐𝑡, 𝑥𝑡) ≤ 𝛽𝑔𝑇

√

4(𝑇 + 2)𝛾𝑔𝑇 ,

𝑇
∑

𝑡=1
𝛽𝐺𝑡 𝜎

𝐺
𝑡 (𝑐𝑡, 𝑥𝑡) ≤ 𝛽𝐺𝑇

√

4(𝑇 + 2)𝛾𝐺𝑇 .

Before we prove Lemmas 3, 4 and 7, we first define the high probability event that

 =

⎧

⎪

⎨

⎪

0 ≤ 𝑓𝑡(𝑐𝑡, 𝑥) − 𝑓 (𝑐𝑡, 𝑥) ≤ 2𝛽𝑓𝑡 𝜎
𝑓
𝑡 (𝑐𝑡, 𝑥),

0 ≤ 𝑔(𝑐𝑡, 𝑥) − 𝑔̌𝑡(𝑐𝑡, 𝑥) ≤ 2𝛽𝑔𝑡 𝜎
𝑔
𝑡 (𝑐𝑡, 𝑥),

𝐺 𝐺

⎫

⎪

⎬

⎪

18

⎩
0 ≤ 𝐺(𝑐𝑡, 𝑥) − 𝐺̌𝑡(𝑐𝑡, 𝑥) ≤ 2𝛽𝑡 𝜎𝑡 (𝑐𝑡, 𝑥),∀𝑥, 𝑡.⎭

Performance Evaluation 162 (2023) 102376H. Guo et al.

N
r
r

B

L

P

L
f

and

P() ≥ 1 − 𝑝.

ote the event  will be frequently used in the proof of Theorem 1. Now we are ready to prove Lemmas 3, 4 and 7, which are
egarded as ‘‘over-estimation errors’’ and ‘‘under-estimation errors’’. We present them in a unified way in Lemma 11 and Lemma 12,
espectively.

.1. Proof of Lemmas 3, 4 and 7

emma 11 (Over-Estimation Errors). Let {𝑥1,… , 𝑥𝑇 } be the collection of decisions chosen by the algorithm. Under Algorithm POBO, the
following inequalities hold for all 𝑥 ∈  :

E

[𝑇
∑

𝑡=1
𝑓𝑡(𝑐𝑡, 𝑥𝑡) − 𝑓 (𝑐𝑡, 𝑥𝑡)

]

≤ 2𝐵𝑓𝑇 𝑝 + 2𝛽𝑓𝑇

√

4(𝑇 + 2)𝛾𝑓𝑇 ,

E

[𝑇
∑

𝑡=1
𝑔(𝑐𝑡, 𝑥𝑡) − 𝑔̌𝑡(𝑐𝑡, 𝑥𝑡)

]

≤ 2𝐵𝑔𝑇 𝑝 + 2𝛽𝑔𝑇
√

4(𝑇 + 2)𝛾𝑔𝑇 ,

E

[𝑇
∑

𝑡=1
𝐺(𝑐𝑡, 𝑥𝑡) − 𝐺̌𝑡(𝑐𝑡, 𝑥𝑡)

]

≤ 2𝐵𝐺𝑇 𝑝 + 2𝛽𝐺𝑇
√

4(𝑇 + 2)𝛾𝐺𝑇 .

roof. Combine Lemmas 9 and 10, we have

E

[𝑇
∑

𝑡=1
𝑓𝑡(𝑐𝑡, 𝑥𝑡) − 𝑓 (𝑐𝑡, 𝑥𝑡)

]

= E

[𝑇
∑

𝑡=1
𝑓𝑡(𝑐𝑡, 𝑥𝑡) − 𝑓 (𝑐𝑡, 𝑥𝑡)|̄

]

+ E

[𝑇
∑

𝑡=1
𝑓𝑡(𝑐𝑡, 𝑥𝑡) − 𝑓 (𝑐𝑡, 𝑥𝑡)|

]

≤ 2𝐵𝑓𝑇 𝑝P(̄) + E

[𝑇
∑

𝑡=1
𝑓𝑡(𝑐𝑡, 𝑥𝑡) − 𝑓 (𝑐𝑡, 𝑥𝑡)|

]

≤ 2𝐵𝑓𝑇 𝑝 + 2𝛽𝑓𝑇

√

4(𝑇 + 2)𝛾𝑓𝑇

emma 12 (Under-Estimation Errors). Let {𝑥1,… , 𝑥𝑇 } be the collection of decisions chosen by the algorithm. Under Algorithm POBO, the
ollowing inequalities hold for all 𝑥 ∈  :

E

[𝑇
∑

𝑡=1
𝑓 (𝑐𝑡, 𝑥) − 𝑓𝑡(𝑐𝑡, 𝑥)

]

≤ 2𝐵𝑓𝑇 𝑝

E

[𝑇
∑

𝑡=1
𝑔̌𝑡(𝑐𝑡, 𝑥) − 𝑔(𝑐𝑡, 𝑥)

]

≤ 2𝐵𝑔𝑇 𝑝

E

[𝑇
∑

𝑡=1
𝐺̌𝑡(𝑐𝑡, 𝑥) − 𝐺(𝑐𝑡, 𝑥)

]

≤ 2𝐵𝐺𝑇 𝑝

Proof. Combining Lemmas 9 and 10, we have

E

[𝑇
∑

𝑡=1
𝑓 (𝑐𝑡, 𝑥) − 𝑓𝑡(𝑐𝑡, 𝑥)

]

= E

[𝑇
∑

𝑡=1
𝑓 (𝑐𝑡, 𝑥) − 𝑓𝑡(𝑐𝑡, 𝑥)|̄

]

+ E

[𝑇
∑

𝑡=1
𝑓 (𝑐𝑡, 𝑥) − 𝑓 (𝑐𝑡, 𝑥)|

]

≤ 2𝐵𝑓𝑇P(̄) + E

[𝑇
∑

𝑡=1
𝑓 (𝑐𝑡, 𝑥) − 𝑓 (𝑐𝑡, 𝑥)|

]

≤ 2𝐵𝑓𝑇 𝑝.

Similarly, we prove the cumulative under-estimation errors for 𝑔 and 𝐺.

Appendix C. Proof of regret bound in Theorem 1

Recall the regret decomposition in (23)–(24), we have

+(𝑇) = E[𝑇 ∫𝑥∈
𝑓 (𝑐, 𝑥)𝜋∗(𝑥)𝑑𝑥 −

𝑇
∑

𝑡=1
𝑓 (𝑐𝑡, 𝑥𝑡)]

= E[
𝑇
∑

𝑡=1
(∫𝑥∈

𝑓 (𝑐𝑡, 𝑥)𝜋∗(𝑥)𝑑𝑥 − ∫𝑥∈
𝑓 (𝑐𝑡, 𝑥)𝜋

𝜀𝑡
∗ (𝑥)𝑑𝑥)]

⏟⏞⏞⏟⏞⏞⏟
19

𝜀𝑡−tight

Performance Evaluation 162 (2023) 102376H. Guo et al.

L

W

+E[
𝑇
∑

𝑡=1
∫𝑥∈

(𝑓 (𝑐𝑡, 𝑥) − 𝑓𝑡(𝑐𝑡, 𝑥))𝜋
𝜀𝑡
∗ (𝑥)𝑑𝑥]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
reward mismatch

+E[
𝑇
∑

𝑡=1
(∫𝑥∈

𝑓𝑡(𝑐𝑡, 𝑥)𝜋
𝜀𝑡
∗ (𝑥)𝑑𝑥 − 𝑓𝑡(𝑐𝑡, 𝑥𝑡))]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Lyapunov drift

+E[
∑

𝑡=1
𝑓𝑡(𝑐𝑡, 𝑥𝑡) − 𝑓 (𝑐𝑡, 𝑥𝑡)]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
reward mismatch

.

The reward mismatch in Lemmas 11 and 12 has been proved in Appendix B.1. We need to prove the difference between the two
policies in Lemma 2 and the Lyapunov drift analysis in Lemma 1 with the key property in Lemma 8.

C.1. Proof of Lemma 1

According to the key property in Lemma 8, we rearrange terms in (31) and have

∫𝑥∈
𝑓𝑡(𝑐𝑡, 𝑥)𝜋(𝑥)𝑑𝑥 − 𝑓𝑡(𝑐𝑡, 𝑥𝑡) ≤ −

𝛥(𝑡)
𝑉𝑡

+
𝑄𝑡
𝑉𝑡 ∫𝑥∈

(𝑔̌𝑡(𝑐𝑡, 𝑥) + 𝜀𝑡)𝜋(𝑥)𝑑𝑥

+ 𝑄̂𝑡 ∫𝑥∈
𝐺̌+
𝑡 (𝑐𝑡, 𝑥)I{𝑐𝑡 ∈ 𝑝}𝜋(𝑥)𝑑𝑥 +

(𝐵2
𝑔 + 𝜀2𝑡)

𝑉𝑡
.

et 𝐻𝑡 = [𝑄𝑡, 𝑄̂𝑡, 𝑓𝑡, 𝑔̌𝑡, 𝐺̌𝑡] and ℎ = [𝑄, 𝑄̂, 𝑓 , 𝑔̌, 𝐺̌]. Let 𝜋𝜀 = 𝜋𝜀𝑡
∗ and we have

E[∫𝑥∈
𝑓𝑡(𝑐𝑡, 𝑥)𝜋

𝜀𝑡
∗ (𝑥)𝑑𝑥 − 𝑓𝑡(𝑐𝑡, 𝑥𝑡)|𝐻𝑡 = ℎ] ≤ − E[𝛥(𝑡)

𝑉𝑡
|𝐻𝑡 = ℎ] +

(𝐵2
𝑔 + 𝜀2𝑡)

𝑉𝑡

+ E[
𝑄𝑡
𝑉𝑡 ∫𝑥∈

(𝑔̌𝑡(𝑐𝑡, 𝑥) + 𝜀𝑡)𝜋
𝜀𝑡
∗ (𝑥)𝑑𝑥|𝐻𝑡 = ℎ] (C.1)

+ E[𝑄̂𝑡 ∫𝑥∈
𝐺̌+
𝑡 (𝑐𝑡, 𝑥)I{𝑐𝑡 ∈ 𝑝}𝜋

𝜀𝑡
∗ (𝑥)𝑑𝑥|𝐻𝑡 = ℎ]. (C.2)

e study the terms in (C.1) and (C.2) as follows:

• For (C.1), we have

E[
𝑄𝑡
𝑉𝑡 ∫𝑥∈

(𝑔̌𝑡(𝑐𝑡, 𝑥) + 𝜀𝑡)𝜋
𝜀𝑡
∗ (𝑥)𝑑𝑥|𝐻𝑡 = ℎ]

= 𝑄
𝑉𝑡

E[∫𝑥∈
(𝑔(𝑐𝑡, 𝑥) + 𝜀𝑡)𝜋

𝜀𝑡
∗ (𝑥)𝑑𝑥|𝐻𝑡 = ℎ] + E[

𝑄𝑡
𝑉𝑡 ∫𝑥∈

(𝑔̌𝑡(𝑐𝑡, 𝑥) − 𝑔(𝑐𝑡, 𝑥))𝜋
𝜀𝑡
∗ (𝑥)𝑑𝑥|𝐻𝑡 = ℎ]

≤ E[
𝑄𝑡
𝑉𝑡 ∫𝑥∈

(𝑔̌𝑡(𝑐𝑡, 𝑥) − 𝑔(𝑐𝑡, 𝑥))𝜋
𝜀𝑡
∗ (𝑥)𝑑𝑥|𝐻𝑡 = ℎ]

where the inequality holds because the underlying arrival process P(𝑐𝑡) is independent with the history 𝐻𝑡 and 𝜋𝜀𝑡
∗ is a feasible

solution to the problem (20)–(22) with 𝜀 = 𝜀𝑡.
• For (C.2), we have

E[𝑄̂𝑡 ∫𝑥∈
𝐺̌+
𝑡 (𝑐𝑡, 𝑥)I{𝑐𝑡 ∈ 𝑝}𝜋

𝜀𝑡
∗ (𝑥)𝑑𝑥|𝐻𝑡 = ℎ]

≤ 𝑄̂E[∫𝑥∈
𝐺+(𝑐𝑡, 𝑥)I{𝑐𝑡 ∈ 𝑝}𝜋

𝜀𝑡
∗ (𝑥)𝑑𝑥|𝐻𝑡 = ℎ] + E[𝑄̂𝑡 ∫𝑥∈

(𝐺̌𝑡(𝑐𝑡, 𝑥) − 𝐺(𝑐𝑡, 𝑥))+I{𝑐𝑡 ∈ 𝑝}𝜋
𝜀𝑡
∗ (𝑥)𝑑𝑥|𝐻𝑡 = ℎ]

≤ E[𝑄̂𝑡 ∫𝑥∈
(𝐺̌𝑡(𝑐𝑡, 𝑥) − 𝐺(𝑐𝑡, 𝑥))+I{𝑐𝑡 ∈ 𝑝}𝜋

𝜀𝑡
∗ (𝑥)𝑑𝑥|𝐻𝑡 = ℎ]

where the first inequality holds because (𝐺 + 𝐺̌ −𝐺)+ ≤ 𝐺+ + (𝐺̌ −𝐺)+ and 𝜋𝜀𝑡
∗ is a feasible solution to the problem (20)–(22)

with 𝜀 = 𝜀𝑡 such that ∫𝑥∈ 𝐺+(𝑐𝑡, 𝑥)𝜋
𝜀𝑡
∗ (𝑥)𝑑𝑥 = 0,∀𝑐𝑡 ∈ 𝑝.

Therefore, we have

E[∫𝑥∈
𝑓𝑡(𝑐𝑡, 𝑥)𝜋

𝜀𝑡
∗ (𝑥)𝑑𝑥 − 𝑓𝑡(𝑐𝑡, 𝑥𝑡)|𝐻𝑡 = ℎ]

≤ − E[𝛥(𝑡)
𝑉𝑡

|𝐻𝑡 = ℎ] +
(𝐵2

𝑔 + 𝜀2𝑡)

𝑉𝑡
+ E[

𝑄𝑡
𝑉𝑡 ∫𝑥∈

(𝑔̌𝑡(𝑐𝑡, 𝑥) − 𝑔(𝑐𝑡, 𝑥))𝜋
𝜀𝑡
∗ (𝑥)𝑑𝑥|𝐻𝑡 = ℎ]

+ E[𝑄̂𝑡 ∫𝑥∈
(𝐺̌𝑡(𝑐𝑡, 𝑥) − 𝐺(𝑐𝑡, 𝑥))+I{𝑐𝑡 ∈ 𝑝}𝜋

𝜀𝑡
∗ (𝑥)𝑑𝑥|𝐻𝑡 = ℎ].
20

Performance Evaluation 162 (2023) 102376H. Guo et al.

w
A

C

Taking expectations w.r.t. 𝐻𝑡 on both sides and doing the telescope summation up to 𝑇 , we have

E

[𝑇
∑

𝑡=1
(∫𝑥∈

𝑓𝑡(𝑐𝑡, 𝑥)𝜋
𝜀𝑡
∗ (𝑥)𝑑𝑥 − 𝑓𝑡(𝑐𝑡, 𝑥𝑡))

]

≤ − E[
𝑇
∑

𝑡=1

𝛥(𝑡)
𝑉𝑡

] +
𝑇
∑

𝑡=1

(𝐵2
𝑔 + 𝜀2𝑡)

𝑉𝑡
+ E[

𝑇
∑

𝑡=1

𝑄𝑡
𝑉𝑡 ∫𝑥∈

(𝑔(𝑐𝑡, 𝑥) − 𝑔̌𝑡(𝑐𝑡, 𝑥))𝜋
𝜀𝑡
∗ (𝑥)𝑑𝑥]

+ E[
𝑇
∑

𝑡=1
𝑄̂𝑡 ∫𝑥∈

(𝐺̌𝑡(𝑐𝑡, 𝑥) − 𝐺(𝑐𝑡, 𝑥))+I{𝑐𝑡 ∈ 𝑝}𝜋
𝜀𝑡
∗ (𝑥)𝑑𝑥]

≤E[𝐿(1)
𝑉1

] − E[𝐿(𝑇 + 1)
𝑉𝑇

] +
𝑇
∑

𝑡=1

(𝐵2
𝑔 + 𝜀2𝑡)

𝑉𝑡
+ 2𝑝𝐵𝑔

𝑇
∑

𝑡=1

E[𝑄𝑡]
𝑉𝑡

+ 2𝑝𝐵𝐺

𝑇
∑

𝑡=1
P(𝑐𝑡 ∈ 𝑝)E[𝑄̂𝑡]

≤
𝑇
∑

𝑡=1

(𝐵2
𝑔 + 𝜀2𝑡)

𝑉𝑡
+ 2𝑝𝐵𝑔

𝑇
∑

𝑡=1

(𝑡𝐵𝑔 +
∑𝑡

𝑠=1 𝜀𝑠)
𝑉𝑡

+ 2
𝑇
∑

𝑡=1
P(𝑐𝑡 ∈ 𝑝)𝑡(𝐵𝐺 +𝑁𝐺)𝑝𝐵𝐺 , (C.3)

where the second inequality holds by Lemma 12; the last inequality holds comes from the fact that 𝐿(1) = 0, 𝐿(𝑇 + 1) ≥ 0 and the
bounded queue lengths

𝑄𝑡+1 =
(

𝑄𝑡 + 𝑔̌𝑡, (𝑐𝑡, 𝑥𝑡) + 𝜀𝑡
)+ ≤ 𝑄𝑡 + 𝐵𝑔 + 𝜀𝑡 ≤ 𝑡𝐵𝑔 +

𝑡
∑

𝑠=1
𝜀𝑠,

𝑄̂𝑡 ≤ max(𝑡(𝐵𝐺 +𝑁𝐺), 𝑡) = 𝑡(𝐵𝑔 +𝑁𝑔).

Finally, we choose 𝑝 = 1∕𝑇 2 and substitute 𝜀𝑡 and 𝑉𝑡 in (C.3), which prove Lemma 1.

C.2. Proof of Lemma 2

Recall that 𝜋∗ is the optimal solution to optimization problem (1)–(3). Under Assumption 3, there exists 𝜋0 that satisfies

E
[

∫𝑥∈
𝑔(𝑐, 𝑥)𝜋0(𝑥)𝑑𝑥

]

+ 𝛿 ≤ 0,

∫𝑥∈
𝐺+(𝑐, 𝑥)𝜋0(𝑥)𝑑𝑥 = 0, ∀𝑐 ∈ 𝑝.

We mix 𝜋∗ and 𝜋0 to construct 𝜋𝜀𝑡 = (1 − 𝜀𝑡
𝛿)𝜋∗ +

𝜀𝑡
𝛿 𝜋0 such that

E
[

∫𝑥∈
𝑔(𝑐, 𝑥)𝜋𝜀𝑡 (𝑥)𝑑𝑥

]

+ 𝜀𝑡 ≤ 0,

∫𝑥∈
𝐺+(𝑐, 𝑥)𝜋𝜀𝑡 (𝑥)𝑑𝑥 = 0, ∀𝑐 ∈ 𝑝.

Thus 𝜋𝜀𝑡 is a feasible solution to the problem (20)–(22) with 𝜀 = 𝜀𝑡. Recall 𝜋𝜀𝑡
∗ is the optimal solution to the same problem (20)–(22)

with 𝜀 = 𝜀𝑡, we have

E
[

∫𝑥∈
(𝑓 (𝑐, 𝑥)𝜋∗(𝑥) − 𝑓 (𝑐, 𝑥)𝜋𝜀𝑡

∗ (𝑥))𝑑𝑥
]

≤ E
[

∫𝑥∈
(𝑓 (𝑐, 𝑥)𝜋∗(𝑥) − 𝑓 (𝑐, 𝑥)𝜋𝜀𝑡 (𝑥))𝑑𝑥

]

≤ E
[

∫𝑥∈
𝑓 (𝑐, 𝑥)(

𝜀𝑡
𝛿
𝜋∗(𝑥) −

𝜀𝑡
𝛿
𝜋0(𝑥))𝑑𝑥

]

≤
2𝐵𝑓 𝜀𝑡

𝛿
,

here the first inequality holds since 𝜋𝜀𝑡
∗ is the optimal solution; the last inequality holds because 𝑓 (𝑐, 𝑥) is bounded according to

ssumption 1. The proof of Lemma 2 is completed.

.3. Proving regret bound

With the decomposition and the above lemma, we have

(𝑇) ≤ +(𝑇) ≤
𝑇
∑

𝑡=1

2𝐵𝑓 𝜀𝑡
𝛿

+ 2𝐵𝑓𝑇 𝑝

+
𝑇
∑

𝑡=1

(𝐵2
𝑔 + 𝜀2𝑡)

𝑉𝑡
+ 2𝑝𝐵𝑔

𝑇
∑

𝑡=1

(𝑡𝐵𝑔 +
∑𝑡

𝑠=1 𝜀𝑠)
𝑉𝑡

+ 2
𝑇
∑

𝑡=1
P(𝑐𝑡 ∈ 𝑝)𝑡(𝐵𝑔 +𝑁𝑔)𝑝𝐵𝐺

+ 2𝐵𝑓𝑇 𝑝 + 2𝛽𝑓𝑇

√

4(𝑇 + 2)𝛾𝑓𝑇 .
21

Performance Evaluation 162 (2023) 102376H. Guo et al.

A

s

P

Recall 𝑉𝑡 =
𝛿
√

𝑡
8𝐵𝑓

, 𝜀𝑡 =
6𝛽𝑔𝑇

√

𝛾𝑔𝑇 +2
√

𝑡
and 𝑝 = 1∕𝑇 2, we have:

𝑇
∑

𝑡=1
𝜀𝑡 ≤ (6𝛽𝑔𝑇

√

𝛾𝑔𝑡 + 2)(2
√

𝑇 + 1),
𝑇
∑

𝑡=1
𝑡𝑝 ≤ 1

2
, 2𝐵𝑓𝑇 𝑝 =

2𝐵𝑓

𝑇
,

𝑇
∑

𝑡=1

(𝐵2
𝑔 + 𝜀2𝑡)

𝑉𝑡
≤

𝑇
∑

𝑡=1

(𝐵2
𝑔 + 𝑘2)

𝑉𝑡
≤

16𝐵𝑓 (𝐵2
𝑔 + 𝑘2)

𝛿

√

𝑇 ,

𝑝
𝑇
∑

𝑡=1

(𝑡𝐵𝑔 +
∑𝑡

𝑠=1 𝜀𝑠)
𝑉𝑡

≤ 𝑝
𝑇
∑

𝑡=1

8𝐵𝑓 𝑡(𝐵𝑔 + 𝑘)

𝛿
√

𝑡
≤

16𝐵𝑓 (𝐵𝑔 + 𝑘)

3𝛿
√

𝑇
,

where 𝑘 = 6𝛽𝑔𝑇
√

𝛾𝑔𝑡 + 2. Finally, we have proved the regret bound in Theorem 1.

ppendix D. Proof of average latency violation bound in Theorem 1

Recall the decomposition of average latency violation given by (28), and we have

𝑎𝑣𝑒(𝑡) ≤ E

[𝑡
∑

𝑠=1
(𝑔(𝑐𝑠, 𝑥𝑠) − 𝑔̌𝑠(𝑐𝑠, 𝑥𝑠))

]

+ E[𝑄𝑡+1] −
𝑡

∑

𝑠=1
𝜀𝑠.

The estimation error in Lemma 4 has been proved in Appendix B.1. Next, we focus on proving Lemma 5.

D.1. Proof of Lemma 5

To establish the upper bound of 𝑄𝑡+1, we present the following Lemma on Lyapunov drift analysis. The lemma is derived
from [19] with a slight modification from [20,29], where the boundary (i.e., 𝜙𝑡 in the lemma) is allowed to be time-varying. The
proof can be found in Lemma 11 in [19].

Lemma 13. Let  be some event, 𝑆(𝑡) be a random process, 𝛷(𝑡) be its Lyapunov function with 𝛷(0) = 𝛷0 and 𝛷(𝑆(𝑡+1))−𝛷(𝑆(𝑡)) be the
Lyapunov drift. Given an increasing sequence {𝜑𝑡}, 𝜌 𝑣𝑚𝑎𝑥 with 0 ≤ 𝜌 ≤ 𝑣𝑚𝑎𝑥, if the expected drift satisfies the following E[𝛥(𝑡)|𝑆(𝑡) = 𝑠, ]
atisfies the following condition:

(i) There exist 𝜌 > 0 and 𝜑𝑡 > 0 such that E[𝛷(𝑆(𝑡 + 1)) −𝛷(𝑆(𝑡))|𝑆(𝑡) = 𝑠, ] ≤ −𝜌 when 𝛷(𝑠) ≥ 𝜑𝑡,
(ii) |𝛷(𝑆(𝑡 + 1)) −𝛷(𝑆(𝑡))| ≤ 𝑣𝑚𝑎𝑥 holds with probability one;
Then we have the following inequality with 𝜁 = 𝜌

𝑣2𝑚𝑎𝑥+𝑣𝑚𝑎𝑥𝜌∕3

E[𝑒𝜁𝛷𝑆(𝑡)
|] ≤ 𝑒𝜁𝛷0 + 2𝑒𝜁 (𝑣𝑚𝑎𝑥+𝜑𝑡)

𝜁𝜌
.

We first prove the following lemma conditioned on this event and 𝜀𝑡 ≤ 𝛿∕2 for any 𝑡.

Lemma 14. Assume 𝜀𝑡 ≤ 𝛿∕2, and let 𝜑𝑡 =
4(2𝐵𝑓 𝑉𝑡+(𝐵2

𝑔+𝜀
2
𝑡))

𝛿 . Under the POBO algorithm, we have
(i) E[𝑄𝑡+1 −𝑄𝑡|𝐻𝑡 = ℎ, ] ≤ − 𝛿

4 , when 𝑄𝑡 ≥ 𝜑𝑡 ;
(ii) |𝑄𝑡+1 −𝑄𝑡| ≤ 𝐵𝑔 + 1 holds with probability one.

roof. From Lemma 8, we immediately have for any policy 𝜋

𝛥(𝑡) ≤ 𝑉𝑡𝑓𝑡(𝑐𝑡, 𝑥𝑡) − 𝑉𝑡 ∫𝑥∈
𝑓𝑡(𝑐𝑡, 𝑥)𝜋(𝑥)𝑑𝑥 +𝑄𝑡 ∫𝑥∈

(𝑔̌𝑡(𝑐𝑡, 𝑥) + 𝜀𝑡)𝜋(𝑥)𝑑𝑥

+ 𝑉𝑡𝑄̂𝑡 ∫𝑥∈
𝐺̌+
𝑡 (𝑐𝑡, 𝑥)I{𝑐𝑡 ∈ 𝑝}𝜋(𝑥)𝑑𝑥 + (𝐵2

𝑔 + 𝜀2𝑡).

Given 𝐻𝑡 = ℎ and the event  , let 𝜋 = 𝜋𝜀, we have

E
[

𝛥(𝑡)|𝐻𝑡 = ℎ, 
]

≤ 2𝐵𝑓𝑉𝑡 +𝑄𝑡E
[

∫𝑥∈
(𝑔̌𝑡(𝑐𝑡, 𝑥) + 𝜀𝑡)𝜋𝜀(𝑥)𝑑𝑥|𝐻𝑡 = ℎ, 

]

+ 𝑉𝑡𝑄̂𝑡E
[

∫𝑥∈
𝐺̌+
𝑡 (𝑐𝑡, 𝑥)I{𝑐𝑡 ∈ 𝑝}𝜋𝜀(𝑥)𝑑𝑥|𝐻𝑡 = ℎ, 

]

+ (𝐵2
𝑔 + 𝜀2𝑡)

≤ 2𝐵𝑓𝑉𝑡 +𝑄𝑡E
[

∫𝑥∈
(𝑔̌𝑡(𝑐𝑡, 𝑥) + 𝜀𝑡)𝜋𝜀(𝑥)𝑑𝑥|𝐻𝑡 = ℎ, 

]

+ (𝐵2
𝑔 + 𝜀2𝑡)

where the first inequality holds due to the projector imposed on 𝑓𝑡(𝑐𝑡, 𝑥); the second inequality holds similarly as in (C.2) because
𝜋𝜀 is a feasible solution such that ∫𝑥∈ 𝐺(𝑐𝑡, 𝑥)I{𝑐𝑡 ∈ 𝑝}𝜋𝜀(𝑥)𝑑𝑥 = 0 and the 𝐺̌+

𝑡 (𝑐𝑡, 𝑥) ≤ 𝐺(𝑐𝑡, 𝑥) with a high probability. Moreover,
as 𝜖𝑡 ≤ 𝛿∕2, there exists 𝜋𝜀 such that

𝑔̌𝑡(𝑐𝑡, 𝑥)𝜋𝜀𝑑𝑥 ≤ 𝑔(𝑐𝑡, 𝑥)𝜋𝜀𝑑𝑥 ≤ −𝛿.
22

∫𝑥∈ ∫𝑥∈

Performance Evaluation 162 (2023) 102376H. Guo et al.

T

D

Therefore, the expected drift is

E
[

𝛥𝑡|𝐻𝑡 = ℎ, 
]

≤ − 𝛿
2
𝑄𝑡 + 2𝐵𝑓𝑉𝑡 + (𝐵2

𝑔 + 𝜀2𝑡).

Now we prove the conditions (i) and (ii).

• For condition (i), given that 𝐻𝑡 = ℎ and 𝑄𝑡 ≥ 𝜑𝑡 =
4(2𝐵𝑓 𝑉𝑡+(𝐵2

𝑔+𝜀
2
𝑡))

𝛿 , the Lyapunov drift

E
[1
2
𝑄2

𝑡+1 −
1
2
𝑄2

𝑡 |𝐻𝑡 = ℎ, 
]

≤ − 𝛿
4
𝑄𝑡,

Therefore, we have

E
[

𝑄2
𝑡+1|𝐻𝑡 = ℎ, 

]

≤ (𝑄𝑡 −
𝛿
2
)2,

which implies

E
[

𝑄𝑡+1 −𝑄𝑡|𝐻𝑡 = ℎ, 
]

≤ − 𝛿
2
,

• For condition (ii), we have

|𝑄𝑡+1 −𝑄𝑡| ≤ 𝐵𝑔 + 𝜀𝑡 ≤ 𝐵𝑔 + 1,

where the last inequality holds since 𝜀𝑡 ≤ 𝛿∕2 ≤ 1.

Proving Lemma 5: Let 𝜑𝑡 =
4(2𝐵𝑓 𝑉𝑡+(𝐵2

𝑔+𝜀
2
𝑡))

𝛿 , 𝜌 = 𝛿∕4 and 𝑣𝑚𝑎𝑥 = 𝐵𝑔 + 1, we apply Lemma 13 to establish

E[𝑒𝜁𝑄𝑡
|] ≤ 𝑒𝜁𝑄𝑇 ′ + 2𝑒𝜁 (𝑣𝑚𝑎𝑥+𝜑𝑡)

𝜁𝜌
,

where 𝑇 ′ is the first round that satisfies 𝜀𝑇 ′ ≤ 𝛿∕2, we further show that

E[𝑄𝑡|] ≤
1
𝜁
log(𝑒𝜁𝑄𝑇 ′ + 2𝑒𝜁 (𝑣𝑚𝑎𝑥+𝜑𝑡)

𝜁𝜌
)

≤ 1
𝜁
log(𝑒𝜁𝑄𝑇 ′ +

8𝑣2𝑚𝑎𝑥
3𝜌2

𝑒𝜁 (𝑣𝑚𝑎𝑥+𝜑𝑡))

≤ 1
𝜁
log

(

11𝑣2𝑚𝑎𝑥
3𝜌2

𝑒𝜁 (𝑄𝑇 ′+𝑣𝑚𝑎𝑥+𝜑𝑡)

)

≤
3𝑣2𝑚𝑎𝑥
𝜌

log(
2𝑣𝑚𝑎𝑥
𝜌

) + 𝑣𝑚𝑎𝑥 + 𝜑𝑡 +𝑄𝑇 ′

≤
12(𝐵𝑔 + 1)2

𝛿
log

(8(𝐵𝑔 + 1)
𝛿

)

+ (𝐵𝑔 + 1)

+
4(2𝐵𝑓𝑉𝑡 + (𝐵2

𝑔 + 𝜀2𝑡))

𝛿
+ 𝐵𝑔𝑇

′ +
𝑇 ′
∑

𝑡=1
𝜀𝑡.

hus we can bound 𝑄𝑡 as follows:

E[𝑄𝑡] = E[𝑄𝑡|]P() + E[𝑄𝑡|̄]P(̄)

≤ E[𝑄𝑡|] +
𝑡

∑

𝑠=1
(𝐵𝑔 + 𝜀𝑠)P(̄)

≤
12(𝐵𝑔 + 1)2

𝛿
log

(8(𝐵𝑔 + 1)
𝛿

)

+ (𝐵𝑔 + 1)

+
4(2𝐵𝑓𝑉𝑡 + (𝐵2

𝑔 + 𝜀2𝑡))

𝛿
+ 𝐵𝑔𝑇

′ +
𝑇 ′
∑

𝑡=1
𝜀𝑡 +

𝑡
∑

𝑠=1
(𝐵𝑔 + 𝜀𝑠)𝑝

.2. Proving average latency violation bound

Finally, we prove the violation bound of average latency in Theorem 1. Recall decomposition given by (28):

𝑎𝑣𝑒(𝑡) ∶= E

[𝑡
∑

𝑠=1
𝑔(𝑐𝑠, 𝑥𝑠)

]

= E

[𝑡
∑

𝑠=1
(𝑔(𝑐𝑠, 𝑥𝑠) − 𝑔̌𝑠(𝑐𝑠, 𝑥𝑠))

]

+ E

[𝑡
∑

𝑠=1
𝑔̌𝑠(𝑐𝑠, 𝑥𝑠)

]

≤ E

[𝑡
∑

(𝑔(𝑐𝑠, 𝑥𝑠) − 𝑔̌𝑠(𝑐𝑠, 𝑥𝑠))

]

+ E[𝑄𝑡+1] −
𝑡

∑

𝜀𝑠,
23

𝑠=1 𝑠=1

Performance Evaluation 162 (2023) 102376H. Guo et al.

w

S

T

R
s

A

T

E

w

≤ 2𝐵𝑔𝑇
′𝑝 + 2𝛽𝑔𝑡

√

4(𝑇 ′ + 2)𝛾𝑔𝑡 + E[𝑄𝑡+1] −
𝑡

∑

𝑠=1
𝜀𝑠,

here the last inequality holds by Lemma 12. Consider the case that 𝑡 ≤ 𝑇 ′ and define 𝑘 = 6𝛽𝑔𝑇
√

𝛾𝑔𝑇 + 2, from Eq. (11) we have

𝑄𝑡+1 ≤ 𝑡𝐵𝑔 +
𝑡

∑

𝑠=1
𝜀𝑠 ≤ 𝑇 ′𝐵𝑔 +

𝑇 ′
∑

𝑠=1
𝜀𝑠 ≤ 𝑇 ′𝐵𝑔 + 2𝑘

√

𝑇 ′ + 𝑘.

ince ∑𝑡
𝑠=1 𝜀𝑠 ≥ 0, for anytime soft violation 𝑎𝑣𝑒 we have

𝑎𝑣𝑒(𝑡) ≤ 2𝐵𝑔𝑇
′𝑝 + 2𝛽𝑔𝑡

√

4(𝑇 ′ + 2)𝛾𝑔𝑡 + 𝑇 ′𝐵𝑔 + 2𝑘
√

𝑇 ′ + 𝑘.

hen for 𝑡 ≥ 𝑇 ′, we can still bound 𝑄𝑡+1 through Lemma 5 and get

𝑎𝑣𝑒(𝑡) ≤ 2𝐵𝑔𝑡𝑝 + 2𝛽𝑔𝑡
√

4(𝑡 + 2)𝛾𝑔𝑡 +
12(𝐵𝑔 + 1)2

𝛿
log(

8(𝐵𝑔 + 1)
𝛿

) + (𝐵𝑔 + 1)

+
4(2𝐵𝑓𝑉𝑡+1 + (𝐵2

𝑔 + 𝜀2𝑡))

𝛿
+ 𝐵𝑔𝑇

′ +
𝑇 ′
∑

𝑡=1
𝜀𝑡 + 𝑝

𝑡+1
∑

𝑠=1
(𝐵𝑔 + 𝜀𝑠) −

𝑡
∑

𝑠=1
𝜀𝑠.

ecall the values of 𝑉𝑡 and 𝜀𝑡, we establish 𝑎𝑣𝑒(𝑡) when 𝑡 ≥ 𝑇 ′, thereby completing the proof of the average latency violation as
tipulated in Theorem 1.

ppendix E. Proof of cumulative tail latency violation in Theorem 1

Recall we decompose the cumulative violation in the following way

E

[𝑇
∑

𝑡=1
𝐺+(𝑐𝑡, 𝑥𝑡)I{𝑐𝑡 ∈ 𝑝}

]

= E

[𝑇
∑

𝑡=1
(𝐺+

𝑡 (𝑐𝑡, 𝑥𝑡) + 𝐺(𝑐𝑡, 𝑥𝑡) − 𝐺̌𝑡(𝑐𝑡, 𝑥𝑡))+I{𝑐𝑡 ∈ 𝑝}

]

he estimation error in Lemma 7 has been proved in Appendix B.1, and we focus on proving Lemma 6.

.1. Proof of Lemma 6

Let 𝜋 = 𝜋∗ in Lemma 8. By rearranging the inequality, we have the cumulative violation

𝑄̂𝑡𝐺̌
+
𝑡 (𝑐𝑡, 𝑥𝑡)I{𝑐𝑡 ∈ 𝑝} ≤ −

𝛥(𝑡)
𝑉𝑡

+ 𝑓𝑡(𝑐𝑡, 𝑥𝑡) − ∫𝑥∈
𝑓𝑡(𝑐𝑡, 𝑥)𝜋∗(𝑥)𝑑𝑥 +

𝑄𝑡
𝑉𝑡 ∫𝑥∈

(𝑔̌𝑡(𝑐𝑡, 𝑥) + 𝜀𝑡)𝜋∗(𝑥)𝑑𝑥

+ 𝑄̂𝑡 ∫𝑥∈
𝐺̌+
𝑡 (𝑐𝑡, 𝑥)I{𝑐𝑡 ∈ 𝑝}𝜋∗(𝑥)𝑑𝑥 +

(𝐵2
𝑔 + 𝜀2𝑡)

𝑉𝑡
.

In conjunction with |𝑓 | ≤ 𝐵𝑓 , |𝑔̌| ≤ 𝐵𝑔 and 𝑄̂𝑡 ≥ 𝜂𝑡, we have

𝐺̌+
𝑡 (𝑐𝑡, 𝑥𝑡)I{𝑐𝑡 ∈ 𝑝} ≤ −𝛥(𝑡)

𝑄̂𝑡𝑉𝑡
+

2𝐵𝑓

𝑄̂𝑡
+

𝑄𝑡(𝐵𝑔 + 𝜀𝑡)

𝑄̂𝑡𝑉𝑡
+

(𝐵2
𝑔 + 𝜀2𝑡)

𝑄̂𝑡𝑉𝑡

+ ∫𝑥∈
𝐺̌+
𝑡 (𝑐𝑡, 𝑥)I{𝑐𝑡 ∈ 𝑝}𝜋∗(𝑥)𝑑𝑥

≤ −𝛥(𝑡)
𝜂𝑡𝑉𝑡

+
2𝐵𝑓

𝜂𝑡
+

𝑄𝑡(𝐵𝑔 + 𝜀𝑡)
𝜂𝑡𝑉𝑡

+
(𝐵2

𝑔 + 𝜀2𝑡)

𝜂𝑡𝑉𝑡

+ ∫𝑥∈
𝐺̌+
𝑡 (𝑐𝑡, 𝑥)I{𝑐𝑡 ∈ 𝑝}𝜋∗(𝑥)𝑑𝑥

Under the event  , we have

𝐺̌+
𝑡 (𝑐𝑡, 𝑥𝑡)I{𝑐𝑡 ∈ 𝑝} ≤ −𝛥(𝑡)

𝜂𝑡𝑉𝑡
+

2𝐵𝑓

𝜂𝑡
+

𝑄𝑡(𝐵𝑔 + 𝜀𝑡)
𝜂𝑡𝑉𝑡

+
(𝐵2

𝑔 + 𝜀2𝑡)

𝜂𝑡𝑉𝑡
,

hich implies

E

[𝑇
∑

𝑡=1
𝐺̌+
𝑡 (𝑐𝑡, 𝑥𝑡)I{𝑐𝑡 ∈ 𝑝}|

]

≤ 𝐿(1)
𝑉1

−
𝐿(𝑇)
𝑇𝑉𝑇

+
𝑇
∑

𝑡=1

2𝐵𝑓

𝑡
+

𝑇
∑

𝑡=1

𝐵𝑔𝑄𝑡

𝑡𝑉𝑡
+

𝑇
∑

𝑡=1

𝑄𝑡𝜀𝑡
𝑡𝑉𝑡

+
𝑇
∑

𝑡=1

(𝐵2
𝑔 + 𝜀2𝑡)

𝑡𝑉𝑡

≤
𝑇
∑

𝑡=1

2𝐵𝑓

𝑡
+

𝑇
∑

𝑡=1

𝐵𝑔𝑄𝑡

𝑡𝑉𝑡
+

𝑇
∑

𝑡=1

𝑄𝑡𝜀𝑡
𝑡𝑉𝑡

+
𝑇
∑

𝑡=1

(𝐵2
𝑔 + 𝜀2𝑡)

𝑡𝑉𝑡
,

24

Performance Evaluation 162 (2023) 102376H. Guo et al.

w

E

where the last inequality comes from the definition of 𝐿(𝑡), we then recall the fact that

𝑄𝑡 ≤ 𝑡𝐵𝑔 +
𝑡

∑

𝑠=1
𝜀𝑠 ≤ 𝑡𝐵𝑔 + 2𝑘

√

𝑡 + 𝑘 ≤ 𝑡𝐵𝑔 + 3𝑘
√

𝑡,

where 𝑘 = 6𝛽𝑔𝑇
√

𝛾𝑔𝑇 + 2. We can immediately get the following bound

E

[𝑇
∑

𝑡=1
𝐺̌+
𝑡 (𝑐𝑡, 𝑥𝑡)I{𝑐𝑡 ∈ 𝑝}|

]

≤
𝑇
∑

𝑡=1

2𝐵𝑓

𝑡
+

𝑇
∑

𝑡=1
(
𝐵2
𝑔

𝑉𝑡
+

3𝑘𝐵𝑔
√

𝑡𝑉𝑡
) +

𝑇
∑

𝑡=1
(
𝑘𝐵𝑔

𝑉𝑡
+ 3𝑘2

√

𝑡𝑉𝑡
) +

𝑇
∑

𝑡=1
(
𝐵2
𝑔 + 𝑘2

𝑡𝑉𝑡
)

≤ 2𝐵𝑓 (log 𝑇 + 1) +
16𝐵𝑓𝐵2

𝑔

𝛿

√

𝑇 +
24𝑘𝐵𝑓𝐵𝑔

𝛿
(log 𝑇 + 1) +

16𝑘𝐵𝑓𝐵𝑔

𝛿

√

𝑇

+
24𝑘2𝐵𝑓

𝛿
(log 𝑇 + 1) +

4𝐵𝑓 (𝐵2
𝑔 + 𝑘2)

𝛿
√

𝑇

here the first inequality holds since 𝜀𝑡 =
𝑘
√

𝑡
≤ 𝑘. Therefore, we prove Lemma 6 with 𝑝 = 1∕𝑇 2 that

E[
𝑇
∑

𝑡=1
𝐺̌+
𝑡 (𝑐𝑡, 𝑥𝑡)I{𝑐𝑡 ∈ 𝑝}] ≤ E[

𝑇
∑

𝑡=1
𝐺̌+
𝑡 (𝑐𝑡, 𝑥𝑡)I{𝑐𝑡 ∈ 𝑝}|] + 𝑇P(𝑐 ∈ 𝐶𝑝)𝐵𝐺𝑝

≤ (2𝐵𝑓 +
24(𝑘𝐵𝑓𝐵𝑔 + 𝑘2𝐵𝑓)

𝛿
)(1 + log 𝑇) +

16𝐵𝑓𝐵𝑔(𝐵𝑔 + 1)
𝛿

√

𝑇

+ +
4𝐵𝑓 (𝐵2

𝑔 + 𝑘2)

𝛿
√

𝑇
+

P(𝑐 ∈ 𝐶𝑝)𝐵𝐺

𝑇
.

.2. Proving cumulative latency violation bound

Finally, we prove cumulative latency violation bound in Theorem 1.

E

[𝑇
∑

𝑡=1
𝐺+(𝑐𝑡, 𝑥𝑡)I{𝑐𝑡 ∈ 𝑝}

]

≤ E

[𝑇
∑

𝑡=1
𝐺̌+
𝑡 (𝑐𝑡, 𝑥𝑡)I{𝑐𝑡 ∈ 𝑝}

]

+ E

[𝑇
∑

𝑡=1
(𝐺(𝑐𝑡, 𝑥𝑡) − 𝐺̌𝑡(𝑐𝑡, 𝑥𝑡))+I{𝑐𝑡 ∈ 𝑝}

]

≤ (2𝐵𝑓 +
24(𝑘𝐵𝑓𝐵𝑔 + 𝑘2𝐵𝑓)

𝛿
)(1 + log 𝑇) +

16𝐵𝑓𝐵𝑔(𝐵𝑔 + 1)
𝛿

√

𝑇

+ +
4𝐵𝑓 (𝐵2

𝑔 + 𝑘2)

𝛿
√

𝑇
+

P(𝑐 ∈ 𝐶𝑝)𝐵𝐺

𝑇
. + (2𝐵𝐺𝑇 𝑝 + 2𝛽𝑔𝑇

√

4(𝑇 + 2)𝛾𝐺𝑇),

where the last inequality holds since from Lemma 11

E

[𝑇
∑

𝑡=1
𝐺(𝑐𝑡, 𝑥𝑡) − 𝐺̌𝑡(𝑐𝑡, 𝑥𝑡)

]

≤ 2𝐵𝐺𝑇 𝑝 + 2𝛽𝑔𝑇
√

4(𝑇 + 2)𝛾𝐺𝑇 .

Appendix F. Additional details on the experiments

F.1. Modification for CKB algorithm in [14]

CKB in [14] also utilizes the Gaussian process to construct estimates for the utility function and constraint functions. However,
it only considers to optimize the setting with single-type requests. We modify CKB such that it is applicable to the setting with
multiple-type requests:

• Decision: When a 𝑐𝑡-type microservice request arrives, we use optimistic/pessimistic estimations for reward/constraints in the
same way we define in Section 3. Then, we construct the pseudo-acquisition function and make the decision such that

𝑥𝑡 = arg max
𝑥∈

𝑓𝑡(𝑐, 𝑥) − 𝜙𝑡𝑔̌𝑡(𝑐, 𝑥) − 𝜙̂𝑡(𝑐)𝐺̌𝑡(𝑐, 𝑥),

where 𝜙̂𝑡(𝑐) is the dual variable corresponding to 𝐺(𝑐, 𝑥) ≤ 0.
• Update: The dual variable 𝜙̂𝑡+1(𝑐) updates similarly with 𝜙𝑡 as follows

𝜙𝑡+1(𝑐𝑡) = [𝜙𝑡+1(𝑐𝑡) + 𝐺̄𝑡(𝑐𝑡, 𝑥𝑡)∕𝑉]𝜌0,
25

where 𝜌 is a hyperparameter related to the Slater’s constant 𝛿.

Performance Evaluation 162 (2023) 102376H. Guo et al.
Fig. F.12. RPOL’s target tail latency for all requests is set to 400 ms.

Fig. F.13. RPOL’s target tail latency for all requests is set to 1000 ms.

Fig. F.14. RPOL’s target tail latencies for login/search/recommendation requests are set to 400/700/1000 ms.

F.2. Discussion on RPOL

As discussed in the paper, RPOL is suitable for SLA on the tail latency. There are two issues in applying RPOL in our setting:
(1) it is unclear how to properly set the threshold of the tail latency to satisfy the average system latency constraint; (2) RPOL
might behave aggressively (or over-conservatively in satisfying SLAs). Given these two issues, we conduct preliminary experiments
for interested readers where we customize RPOL for our setting by imposing various tail latencies to test the gap between RPOL
and POBO. The setup is the same as in the experiments of stationary requests in Section 5.3.2. The results are summarized in
Figs. F.12–F.14. For three settings, compared with RPOL, POBO has the average pod usage with gaps of −4.86, −0.76, and −1.10;
percentage of violated requests with the gaps −1.25%, −0.63%, and 0.05%; and the P90 latency with the gaps −2.05, −76.22, and
−55.82 ms. The results justify our intuition that a tight threshold leads to a low percentage of violated requests but might introduce
the conservative resource configuration in Fig. F.12, and a loose threshold leads to a proper configuration but results in a large tail
latency and a larger percentage of violated requests in Fig. F.13. The observation is also similar when we set different thresholds
for three types of requests in Fig. F.14.
26

Performance Evaluation 162 (2023) 102376H. Guo et al.
Fig. F.15. Percentage of violated requests-resource function learning.

Fig. F.16. Warm-up test with single-type requests: search requests.

Fig. F.17. Sensitivity study with just search requests.

F.3. Learning curve for the percentage of violated requests constraint functions

We also test the ability of POBO to learn the relationship between the percentage of violated requests and the number of pods.
Fig. F.15 shows that the function learned by POBO is very close to the ground truth.

F.4. The experiment with just single-type requests: Search requests

We test the POBO with just search requests. Fig. F.16 plots the performance under HPA, CKB, and POBO for the search requests,
respectively. Compared with CKB, POBO has a lower average pod usage with a gap of 6.20; a lower percentage of violated requests
with a gap of 2.28%, and a better P90 latency with a gap of 143.26 ms.

We also perform a sensitivity study with the search requests. Fig. F.17 plots the performance for the search requests with the
tail latency requirements from the strict 1000 ms to the loose 1600 ms. Since the complexity and average latency of search requests
is high, the requirement range of search requests is larger than login and recommendation. Results verify that POBO is robust and
adaptive to the varying SLA requirement on tail latency with the search requests.
27

Performance Evaluation 162 (2023) 102376H. Guo et al.

F

a
C
b

F

t
l

R

Fig. F.18. The experiment under stationary distribution of [33%, 33%, 33%].

Fig. F.19. The daily workload pattern extracted and interpolated from [27].

.5. The experiment for the multi-type requests under the distribution [33%, 33%, 33%]

We consider the requests for login, recommendation, and search generated from the distribution of [33%, 33%, 33%], which is
uniform distribution. Figs. F.18(a)–F.18(c) plot the performance under HPA, CKB, and POBO for the workload. Compared with
KB, POBO has a lower average pod usage with a gap of 1.46; a lower percentage of violated requests with a gap of 0.20% and a
etter P90 latency with a gap of 21.44 ms.

.6. Non-stationary traffic pattern in [27]

As in [27], we analyze the traffic pattern of a workload trace collected from a production MLaaS cluster in Alibaba. We extract
he number of tasks submitted for the day after 8:00 a.m. Since the raw data was recorded hourly and had only 24 values, we
inearly interpolate the raw data by plugging in 20 values every hour. The trajectory is shown in Fig. F.19.

eferences

[1] N. Alshuqayran, N. Ali, R. Evans, A systematic mapping study in microservice architecture, in: 2016 IEEE 9th International Conference on Service-Oriented
Computing and Applications, SOCA, IEEE, 2016, pp. 44–51.

[2] Alibaba cloud, 2023, URL https://www.alibabacloud.com.
[3] Amazon web services, 2023, URL https://aws.amazon.com.
[4] GoogleCloud, 2023, URL https://cloud.google.com.
[5] J. Park, B. Choi, C. Lee, D. Han, GRAF: A graph neural network based proactive resource allocation framework for SLO-oriented microservices, in:

Proceedings of the 17th International Conference on Emerging Networking EXperiments and Technologies, 2021, pp. 154–167.
[6] Y. Zhang, W. Hua, Z. Zhou, G.E. Suh, C. Delimitrou, Sinan: ML-based and qos-aware resource management for cloud microservices, in: Proceedings of the

26th ACM International Conference on Architectural Support for Programming Languages and Operating Systems, 2021, pp. 167–181.
[7] S. Luo, H. Xu, K. Ye, G. Xu, L. Zhang, J. He, G. Yang, C. Xu, Erms: Efficient resource management for shared microservices with SLA guarantees, in:

Proceedings of the 28th ACM International Conference on Architectural Support for Programming Languages and Operating Systems, Volume 1, 2022, pp.
62–77.

[8] Q. Li, B. Li, P. Mercati, R. Illikkal, C. Tai, M. Kishinevsky, C. Kozyrakis, RAMBO: Resource allocation for microservices using Bayesian optimization, IEEE
Comput. Archit. Lett. 20 (1) (2021) 46–49.

[9] T. Patel, D. Tiwari, Clite: Efficient and qos-aware co-location of multiple latency-critical jobs for warehouse scale computers, in: 2020 IEEE International
Symposium on High Performance Computer Architecture, HPCA, IEEE, 2020, pp. 193–206.

[10] R.B. Roy, T. Patel, D. Tiwari, Satori: efficient and fair resource partitioning by sacrificing short-term benefits for long-term gains, in: 2021 ACM/IEEE 48th
Annual International Symposium on Computer Architecture, ISCA, IEEE, 2021, pp. 292–305.

[11] Y. Liu, H. Xu, W.C. Lau, Online resource optimization for elastic stream processing with regret guarantee, in: Proceedings of the 51st International
Conference on Parallel Processing, 2022, pp. 1–11.
28

http://refhub.elsevier.com/S0166-5316(23)00046-9/sb1
http://refhub.elsevier.com/S0166-5316(23)00046-9/sb1
http://refhub.elsevier.com/S0166-5316(23)00046-9/sb1
https://www.alibabacloud.com
https://aws.amazon.com
https://cloud.google.com
http://refhub.elsevier.com/S0166-5316(23)00046-9/sb5
http://refhub.elsevier.com/S0166-5316(23)00046-9/sb5
http://refhub.elsevier.com/S0166-5316(23)00046-9/sb5
http://refhub.elsevier.com/S0166-5316(23)00046-9/sb6
http://refhub.elsevier.com/S0166-5316(23)00046-9/sb6
http://refhub.elsevier.com/S0166-5316(23)00046-9/sb6
http://refhub.elsevier.com/S0166-5316(23)00046-9/sb7
http://refhub.elsevier.com/S0166-5316(23)00046-9/sb7
http://refhub.elsevier.com/S0166-5316(23)00046-9/sb7
http://refhub.elsevier.com/S0166-5316(23)00046-9/sb7
http://refhub.elsevier.com/S0166-5316(23)00046-9/sb7
http://refhub.elsevier.com/S0166-5316(23)00046-9/sb8
http://refhub.elsevier.com/S0166-5316(23)00046-9/sb8
http://refhub.elsevier.com/S0166-5316(23)00046-9/sb8
http://refhub.elsevier.com/S0166-5316(23)00046-9/sb9
http://refhub.elsevier.com/S0166-5316(23)00046-9/sb9
http://refhub.elsevier.com/S0166-5316(23)00046-9/sb9
http://refhub.elsevier.com/S0166-5316(23)00046-9/sb10
http://refhub.elsevier.com/S0166-5316(23)00046-9/sb10
http://refhub.elsevier.com/S0166-5316(23)00046-9/sb10
http://refhub.elsevier.com/S0166-5316(23)00046-9/sb11
http://refhub.elsevier.com/S0166-5316(23)00046-9/sb11
http://refhub.elsevier.com/S0166-5316(23)00046-9/sb11

Performance Evaluation 162 (2023) 102376H. Guo et al.
[12] Z. Zhou, Y. Zhang, C. Delimitrou, AQUATOPE: QoS-and-uncertainty-aware resource management for multi-stage serverless workflows, in: Proceedings of
the 28th ACM International Conference on Architectural Support for Programming Languages and Operating Systems, Volume 1, 2022, pp. 1–14.

[13] X. Zhang, H. Wu, Y. Li, J. Tan, F. Li, B. Cui, Towards dynamic and safe configuration tuning for cloud databases, in: Proceedings of the 2022 International
Conference on Management of Data, 2022, pp. 631–645.

[14] X. Zhou, B. Ji, On kernelized multi-armed bandits with constraints, in: Thirty-Sixth Conference on Neural Information Processing Systems, 2022.
[15] H. Guo, Q. Zhu, X. Liu, Rectified pessimistic-optimistic learning for stochastic continuum-armed bandit with constraints, 2022, arXiv preprint arXiv:

2211.14720.
[16] Y. Gan, Y. Zhang, D. Cheng, A. Shetty, P. Rathi, N. Katarki, A. Bruno, J. Hu, B. Ritchken, B. Jackson, et al., An open-source benchmark suite for

microservices and their hardware-software implications for cloud & edge systems, in: Proceedings of the Twenty-Fourth International Conference on
Architectural Support for Programming Languages and Operating Systems, 2019, pp. 3–18.

[17] S.R. Chowdhury, A. Gopalan, On kernelized multi-armed bandits, in: International Conference on Machine Learning, PMLR, 2017, pp. 844–853.
[18] Jaeger, 2023, URL https://www.jaegertracing.io/.
[19] X. Liu, B. Li, P. Shi, L. Ying, An efficient pessimistic-optimistic algorithm for stochastic linear bandits with general constraints, Adv. Neural Inf. Process.

Syst. 34 (2021) 24075–24086.
[20] M.J. Neely, Energy-aware wireless scheduling with near-optimal backlog and convergence time tradeoffs, IEEE/ACM Trans. Netw. 24 (4) (2015) 2223–2236.
[21] Docker desktop, 2023, URL https://www.docker.com/products/docker-desktop/.
[22] Kubernetes, 2023, URL https://kubernetes.io/.
[23] Kubernetes python client, 2023, URL https://github.com/kubernetes-client/python.
[24] Y. Gan, Y. Zhang, D. Cheng, A. Shetty, P. Rathi, N. Katarki, A. Bruno, J. Hu, B. Ritchken, B. Jackson, K. Hu, M. Pancholi, Y. He, B. Clancy, C. Colen,

F. Wen, C. Leung, S. Wang, L. Zaruvinsky, M. Espinosa, R. Lin, Z. Liu, J. Padilla, C. Delimitrou, An open-source benchmark suite for microservices and
their hardware-software implications for cloud & edge systems, in: Proceedings of the Twenty-Fourth International Conference on Architectural Support
for Programming Languages and Operating Systems, ACM, 2019, pp. 3–18.

[25] Wrk2, 2023, URL https://github.com/giltene/wrk2.
[26] Kubernetes horizontal pod autoscaling, 2023, URL https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/.
[27] Q. Weng, W. Xiao, Y. Yu, W. Wang, C. Wang, J. He, Y. Li, L. Zhang, W. Lin, Y. Ding, Mlaas in the wild: Workload analysis and scheduling in large-scale

heterogeneous GPU clusters, in: 19th USENIX Symposium on Networked Systems Design and Implementation, NSDI 2022, Renton, WA, USA, April 4-6,
2022, 2022, pp. 945–960.

[28] N. Srinivas, A. Krause, S.M. Kakade, M. Seeger, Gaussian process optimization in the bandit setting: No regret and experimental design, in: Proceedings
of the International Conference on Machine Learning, 2010, 2010.

[29] B. Hajek, Hitting-time and occupation-time bounds implied by drift analysis with applications, Adv. Appl. Probab. 14 (3) (1982) 502–525.
29

http://refhub.elsevier.com/S0166-5316(23)00046-9/sb12
http://refhub.elsevier.com/S0166-5316(23)00046-9/sb12
http://refhub.elsevier.com/S0166-5316(23)00046-9/sb12
http://refhub.elsevier.com/S0166-5316(23)00046-9/sb13
http://refhub.elsevier.com/S0166-5316(23)00046-9/sb13
http://refhub.elsevier.com/S0166-5316(23)00046-9/sb13
http://refhub.elsevier.com/S0166-5316(23)00046-9/sb14
http://arxiv.org/abs/2211.14720
http://arxiv.org/abs/2211.14720
http://arxiv.org/abs/2211.14720
http://refhub.elsevier.com/S0166-5316(23)00046-9/sb16
http://refhub.elsevier.com/S0166-5316(23)00046-9/sb16
http://refhub.elsevier.com/S0166-5316(23)00046-9/sb16
http://refhub.elsevier.com/S0166-5316(23)00046-9/sb16
http://refhub.elsevier.com/S0166-5316(23)00046-9/sb16
http://refhub.elsevier.com/S0166-5316(23)00046-9/sb17
https://www.jaegertracing.io/
http://refhub.elsevier.com/S0166-5316(23)00046-9/sb19
http://refhub.elsevier.com/S0166-5316(23)00046-9/sb19
http://refhub.elsevier.com/S0166-5316(23)00046-9/sb19
http://refhub.elsevier.com/S0166-5316(23)00046-9/sb20
https://www.docker.com/products/docker-desktop/
https://kubernetes.io/
https://github.com/kubernetes-client/python
http://refhub.elsevier.com/S0166-5316(23)00046-9/sb24
http://refhub.elsevier.com/S0166-5316(23)00046-9/sb24
http://refhub.elsevier.com/S0166-5316(23)00046-9/sb24
http://refhub.elsevier.com/S0166-5316(23)00046-9/sb24
http://refhub.elsevier.com/S0166-5316(23)00046-9/sb24
http://refhub.elsevier.com/S0166-5316(23)00046-9/sb24
http://refhub.elsevier.com/S0166-5316(23)00046-9/sb24
https://github.com/giltene/wrk2
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
http://refhub.elsevier.com/S0166-5316(23)00046-9/sb27
http://refhub.elsevier.com/S0166-5316(23)00046-9/sb27
http://refhub.elsevier.com/S0166-5316(23)00046-9/sb27
http://refhub.elsevier.com/S0166-5316(23)00046-9/sb27
http://refhub.elsevier.com/S0166-5316(23)00046-9/sb27
http://refhub.elsevier.com/S0166-5316(23)00046-9/sb28
http://refhub.elsevier.com/S0166-5316(23)00046-9/sb28
http://refhub.elsevier.com/S0166-5316(23)00046-9/sb28
http://refhub.elsevier.com/S0166-5316(23)00046-9/sb29

	POBO: Safe and optimal resource management for cloud microservices
	Introduction
	Motivation
	Related Work
	Main Contribution

	Microservice Resource Management: a Constrained Bayesian Optimization Approach
	Bayesian optimization

	System and Algorithm Design
	Framework Overview
	System Design
	Online Resource Management Algorithm

	Theoretical Analysis
	Regret Bound
	Average Latency Violation Bound
	Tail Latency Violation Bound
	A Key Property and Sketch of Proof

	Experimental Evaluation
	Implementation
	Evaluation Methodology
	Evaluation Metrics
	Baseline Methods
	Experiment Design

	Result Analysis
	Warm-up: Resource Configuration for Single-type Requests
	Resource Configuration for Multiple-type Requests

	Extensions

	Conclusion
	Declaration of competing interest
	Acknowledgment
	Appendix A. A Key Property
	Appendix B. GP-UCB/LCB Estimation Errors
	Proof of ??

	Appendix C. Proof of Regret bound in Theorem 1
	Proof of Lemma 1
	Proof of Lemma 2
	Proving Regret Bound

	Appendix D. Proof of Average Latency Violation Bound in Theorem 1
	Proof of Lemma 5
	Proving Average Latency Violation Bound

	Appendix E. Proof of Cumulative Tail Latency Violation in Theorem 1
	Proof of Lemma 6
	Proving Cumulative Latency Violation Bound

	Appendix F. Additional Details on the Experiments
	Modification for CKB Algorithm in ZhouJi22
	Discussion on RPOL
	Learning Curve for the Percentage of Violated Requests Constraint Functions
	The Experiment with Just Single-type Requests: Search Requests
	The Experiment for the Multi-type Requests under the Distribution [33%, 33%, 33%]
	Non-stationary Traffic Pattern in weng22

	References

