
QueueFlower: Orchestrating Microservice
Workflows via Dynamic Queue Balancing

Hongchen Cao†, Xinrui Liu†, Hengquan Guo, Jingzhu He∗ and Xin Liu∗
School of Information Science and Technology, ShanghaiTech University, Shanghai, China

Email:{caohch2023, liuxr2023, guohq, hejzh1, liuxin7}@shanghaitech.edu.cn

Abstract—In microservices, requests’ workflows with the com-
plex dependency graphs pose challenges to auto-scaling strategies.
This paper presents QueueFlower, an adaptive and dependency-
agnostic auto-scaling framework for orchestrating microservice
workflows. QueueFlower leverages real-time latency feedback to
estimate queue lengths, effectively identifying congested services
without offline profiling. Unlike previous methods that build
dependency graphs between services, QueueFlower operates on
individual services and adjusts resources proportionally based
on estimated queues, ensuring resources of services are balanced
globally. We have implemented a prototype of QueueFlower
and evaluated its performance on a real-world microservice
application. The experimental results demonstrate that compared
to baseline methods, QueueFlower significantly reduces request
latencies and percentages of SLA violations under stationary and
non-stationary workloads.

Index Terms—Microservices, Auto-scaling, Service-Level
Agreements, Queue Balancing, Availability

I. INTRODUCTION

The microservice architecture decouples applications into
smaller, autonomously functioning modules, enhancing man-
ageability for agile development and upgrades [1], [2]. Mi-
croservice applications usually serve various types of requests
that are represented by unique workflows consisting of mul-
tiple services. Since the requests’ workflows are becoming
lengthy and complex, designing a suitable auto-scaling strat-
egy to meet Service-Level Agreements (SLAs) is becoming
increasingly challenging. First, it is challenging to have prior
knowledge of services’ dependencies of all types of requests
served by a microservice application. With the increasing
volume of microservice applications, the number of served
request types is also increasing. Additionally, the services’
dependencies of requests’ workflows are becoming more and
more complex. Fig. 1 depicts the dependency graph for the
reservation request served by a microservice application. The
vertices/nodes represent the services, and the red dashed lines
represent the request’s workflow paths. The request’s work-
flow consists of ten flow paths routed through six services.
Existing work leverages such dependency among services of
requests to design proper scaling strategies for microservices.
For example, Nodens [3] recorded the requests’ dependency
graphs during offline profiling, and leveraged runtime network
bandwidth information to further infer requests’ congestion

† These authors contributed equally to this work.
∗ Corresponding authors.

1

2

3

4

5

6
78

9
10

frontend

profile reservationsearch

rate geo

Fig. 1: Dependency graph of the reservation request served by
a microservice application.

states heuristically. Nodens then scaled out resources for
congested services. However, such scaling strategies could
suffer from the lack of prior knowledge of all the requests’
dependency graphs that are offline profiled.

Second, even though the services’ dependencies of a request
workflow are known, it is still challenging to scale in and out
properly for the services routed through the request, given a
fixed number of containers. It is essential to have detailed
runtime information (e.g., requests’ congestions and services’
capacities) to design an “optimal” scaling mechanism. How-
ever, such information is difficult to fetch in real-world service
systems. Instead, the end-to-end request’s latency can be easily
obtained, and used as a common criterion by scaling mech-
anisms. Existing work allocated resources to all the services
of a particular type of requests with higher end-to-to latencies
that violate SLAs [4], [5].

In this paper, we introduce QueueFlower, an adaptive,
dependency-agnostic, and lightweight auto-scaling framework.
QueueFlower does not require offline profiling and leverages
runtime latency feedback to estimate the queue length (the
volume of congested requests). Unlike previous methods that
profile requests’ dependency graphs, QueueFlower is agnostic
to the intricate service dependency and proportionally adjusts
resources based on the estimated queue vectors. Our contribu-
tions can be summarized as follows:

• An online adaptive framework. QueueFlower utilizes
real-time latency/SLA information to estimate the real
queues of services which track the per-service backlogs
and bottlenecks in a microservice application. Queue-
Flower adjusts resources proportionally to the estimated
queues so that all queues/bottlenecks are balanced/ad-



dressed globally.
• Dependency–agnostic scaling. QueueFlower operates on

individual services and is agnostic to the complex depen-
dency between services. Therefore, it offers a versatile
framework that can be easily integrated into any microser-
vice application.

• Prototype implementation. We have implemented a pro-
totype of QueueFlower framework, and evaluated its per-
formance on a real-world microservice application. The
experimental results show that QueueFlower’s scaling
strategy minimizes requests’ latencies and percentages of
SLA violations under both stationary and non-stationary
workloads.

II. RELATED WORK

Dependency-aware methods. Deepscaler [6] employed a
graph neural network to learn the dependency graph adaptively
and used it to configure the resources of the interacting
services. Madu [7] also first performed the workload learning
by considering dynamic call graphs into the loss function
and incorporated OS-level metrics for allocation. The work
[8] formulated the microservice placement problem into a
fractional polynomial problem based on identified complicated
dependencies in order to optimize the average response time.
HAB [4] utilized Jackson queueing network [9] to model the
intricate and stochastic dependency among the services node.

Machine learning-based methods. Sinan [10] employed a
convolution neural network for short-term latency prediction
and a boosted tree model for the probability estimation of
long-term SLA violation, informing a rule-based scheduler that
upholds SLA standards. [11] proposed an integer nonlinear
model to minimize cost during the resource allocation process.
[12] utilized a dynamic programming-based offline algorithm
to reduce latencies. Reinforcement Learning-based approaches
[13]–[16] are also used for resource configuration.

However, these approaches must collect substantial histor-
ical data for dependency analysis or offline training, which
takes time for instantaneous configuration and may fail to be
adaptive to unpredictable shifts in workload and changes in
the call graph in the practical microservice system.

III. SYSTEM MODEL

We consider a microservice application represented by a
graph G = (N ,L), where N is the set of nodes and L is the
set of links. A node represents a service component, and a link
represents the computation or communication dependency be-
tween services. The users’ requests continuously arrive at the
microservice system, with each type of request is abstracted
as a flow f , belonging to the flow set F , goes from its source
service node s(f) to its destination service node d(f). We
denote Rf as the route of a flow f , including its sequence of
service nodes and Fn as the set of flows going through node
n. We further let λf be the expected arrival rate of flow f .

Pods are the smallest units in microservices, each hosting
one or more containers that share storage and networking. For
any time slot t, the system manager needs to orchestrate a

resource allocation x(t) = (xn(t))n∈N on the service nodes
such that all resources are fully utilized, i.e.,

∑
n∈N xn(t) =

X, where X is the total number of pods allocated to the
system. Our goal is to find an optimal resource allocation
such that the requests’ latency and SLAs can be minimized
and satisfied.

We introduce qfn(t) as the number of unserved requests
waiting for the service n at the period t. According to the well-
known Little’s law [17], the average latency is proportional to
the queue length along its route E[

∑
n∈Rf qfn(t)]. Intuitively,

to minimize the latency, it is required to minimize/balance all
queues along its route, which could be challenging because
all queues are coupled, as evident from queue dynamics. Let
Af

n(t) represents the number of flow requests f that arrive
in the system and Df

n(t) denotes the number of requests
completed by the end of period t. The queue update at service
n is

qfn(t+ 1) = (qfn(t) +Af
n(t)−Df

n(t)), (1)

when the service n is the starting service, i.e., n = s(f), and

qfn(t+ 1) = (qfn(t) +Df
m(t)−Df

n(t)), (2)

when the precedence of the service n is m for flow f.
Therefore, we must consider its successor service when

allocating pod xf
n(t) to minimize the total queue length. A

potential solution is the “backpressure” type allocation [18],
which utilizes the queue difference between two adjacent
services, i.e., qfm(t) − qfn(t), as the signal. However, several
challenges exist in the practical microservice systems: 1) the
knowledge of flow-level queue length and its backpressure
is not available; 2) the relationship between the allocation
{xf

n(t)} and the actual departure {Df
n(t)} is unknown; 3)

executing the per-flow allocation {xf
n(t)} incurs huge addi-

tional costs. Fortunately, from the whole system perspective,
our target is the system-level performance, that is, to minimize
the queue length for all flows as follows

E[
∑
f∈F

∑
n∈Rf

qfn(t)], (3)

We then exchange the order of the summation in Eq. (3) such
that

E[
∑
f∈F

∑
n∈Rf

qfn(t)] = E[
∑
n∈N

∑
f∈Fn

qfn(t)].

Let qn(t) =
∑

f∈Fn
qfn(t), we have decomposed the flow-level

queues into the service-level queues, which is the key moti-
vation and theoretical foundation behind QueueFlower, such
that we can utilize the real-time service-based information,
agnostic to the complex dependence among flows, to minimize
the system-level latency.

IV. QUEUEFLOWER

This section introduces QueueFlower, a queue-balancing
framework designed for efficiently orchestrating the resources
in microservice application systems. As shown in Fig. 2, the
performance monitor keeps capturing runtime trace data of



  Workload 
  Generator

 login

 search 
reservation

 
recommendation

frontend

search

geo
profile

recommendation

reservation

user

rate

Performance
Monitor

QueueFlower

Resource
Allocator

Estimatior

Kubernetes component

Estimated pods

Microservice instance

Replica set

Jaeger
Preprocessing

q’1,...,q’n

�’
�

��
=

�’
�

��

latency                

ave_SLA

 tail_SLA

...

...

...

...

...

...

latency                ave_SLA  tail_SLA

Configure free pods

Proportional Balance

Fig. 2: System overview of QueueFlower.

requests from the microservice system. QueueFlower then
preprocesses the data, estimates the per-service queues, and
optimizes the resource allocation via a queue balancing algo-
rithm. The resource allocator deploys the pod allocation into
the microservice application.

Preprocessing. The Preprocessing module retrieves raw
tracing data in JSON format from Performance Monitor, which
records information about each request by deploying a tracing
module within each container. Each trace comprises multiple
spans and each span represents a service of the request. By
traversing the tree path, we can collect the services routed
through a type of request. The duration of a particular span
consists of the request’s waiting time, service processing time,
the latency caused by all the immediate child spans, and the
communication time with child spans. We extract the per-
service latency as the difference between the duration of the
span and its immediate child spans. We observe that when the
request arrival rate is large (i.e., request congestion exists), the
service processing time and communication time are too small
compared with the waiting time of requests. Such waiting time
can be incurred by context switches, request buffering, request
serialization/serialization and etc. In this case, the per-service
latency reflects the request’s waiting time, which is useful to
estimate the per-service queue described in Sec. III.

Estimator. Motivated by the per-service queueing structure
in Sec. III, the key component in QueueFlower is to esti-
mate service queues {qn(t)}. To further guarantee SLAs, we
consider SLA violations of average and tail latencies as well
as average latency at a service. It is worth emphasizing that
estimating a flow’s latency on individual services along its
route is generally impossible. However, service-level latencies
and flow-level SLAs are relatively easy to acquire. Queue-
Flower estimates these three key metrics, carefully chooses
the appropriate weights (w1, w2, w3), and calculates the virtual
service queue

q̂n(t) = w1ln(t) + w2

∑
f∈Fn

cf (t) + w3

∑
f∈Fn

gf (t).

Algorithm 1 Queue Balancing in QueueFlower

1: Input: service nodes set N , flow-node set Fn, total
number of pods X, and queue weights (w1, w2, w3).

2: Initialization: q̂n(1) = 1, ∀n ∈ N .
3: for t = 1, ..., T do
4: Queue Estimation:

q̂n(t) = w1ln(t) + w2

∑
f∈Fn

cf (t) + w3

∑
f∈Fn

gf (t).

5: Queue Balancing Allocation: construct the pods con-
figuration xn(t) so that

xn(t) =

⌊
q̂n(t)∑

n∈N q̂n(t)
·X

⌋
.

Allocate the remaining pods r(t) := X −
∑

n∈N xn(t)
(if exist, i.e., r(t) > 0) according to the probability
distribution{q̂n(t)/

∑
n∈N q̂n(t)}n.

6: Deploy Pods Allocation and Extract Key Metrics:

{ln(t)}n∈N , {cf (t), gf (t)}f∈F ,

where ln(t) represents the average latency (node-level);
cf (t) and gf (t) represent the averaged latency SLA
violation and tail latency SLA violation (flow-level).

7: end for

The virtual service queues {q̂n(t)} indicate the level of con-
gestion in real-time in the microservice graph. Intuitively, a
service with a large queue demands more resources. However,
as services are coupled through flows in a complex manner,
it is very likely to cause queue imbalance by using a greedy
or localized allocation. Motivated by the fairness scheduling
in stochastic data networks [19], [20], QueueFlower allocates
pod resources on the services globally and dynamically by



0 5 10 15 20 25
Epochs

300

400

500

600
Ra

te
 (r

ps
)

Fig. 3: The workload pattern of a non-stationary traffic.

solving the following proportionally fair optimization

max
{xn}

N∑
n=1

q̂n(t) log xn s.t.
N∑

n=1

xn = X, xn ≥ 0,∀n.

Fortunately, the optimal solution has the closed form that is
proportional to their queue lengths as follows:

q̂n(t)

xn(t)
=

q̂m(t)

xm(t)
, ∀n,m ∈ N ,

where
∑

n∈N xn(t) = X. This proportional allocation bal-
ances all service queues simultaneously. We summarize the
queue balancing in QueueFlower in Algorithm 1, and we
indeed observe that QueueFlower adjusts the resource dynami-
cally and globally so that the average latency is minimized. We
can always find a set of queue weights (w1, w2, w3) such that
q̂n(t) = qn(t) and the total queue length is bounded under
QueueFlower. In other words, QueueFlower can support the
maximum flow arrival rate such that every flow has a finite
latency, i.e., QueueFlower achieves throughput optimality. We
partially reference [21] for our proof.

V. EXPERIMENTAL EVALUATION

In this section, we present the experimental evaluation. We
have implemented a prototype of QueueFlower and conducted
experiments on a container cluster on a host equipped with
a 2.5GHz Intel i7-11700 CPU, 32GB memory, and running a
64-bit Ubuntu 18.04 operating system. QueueFlower’s source
code is available at https://github.com/caohch-1/QueueFlower.

A. Implementation

Containerization and orchestration. We utilize Docker
Desktop [22] and Kubernetes [23] as our containerization
engine and container orchestration platform. Kubernetes man-
ages several deployments and each deployment provisions a
type of service. By simply changing the number of pods
within each deployment, QueueFlower can rapidly scale in
or out particular services along requests’ routes. Note that
the total number of pods allocated for any application has a
maximum value, meaning that the system cannot allocate too
many resources for an application, further causing resource
shortages for other co-located applications. In our experiment,
we set the maximum pod number of an application to 24.

Benchmarking microservice and workload generator.
To evaluate QueueFlower’s performance, we deploy the Ho-
tel Reservation application of the open-source microservice

benchmark Deathstar [24]. We employ wrk2 [25], a widely-
used HTTP benchmarking tool, as our workload genera-
tor, to send four types of requests, including login, search,
reservation, and recommendation. Login and recommenda-
tion requests are processed by short workflows. Search and
reservation requests are processed by lengthy workflows. We
can easily change the request rate by tuning the configurable
parameters of the workload generator.

Performance monitor. We employ Jaeger [26] for imple-
menting end-to-end distributed tracing in our system to collect
per-service latencies under various requests.

Resource allocator. We implement a pod number controller
using the Kubernetes Python client [27]. By dynamically
adjusting the number of pods within each deployment, we
can effectively manage resource allocation based on Queue-
Flower’s estimation results.

B. Evaluation Methodology

1) Evaluation Metrics: Our evaluation focuses on three
primary metrics: average latency, P90 tail latency, and Service-
Level Agreement violations (SLAVs).

Average latency. The metric represents the average re-
sponse time of each type of request.

P90 tail latency. The metric represents the latency value
below which 90% of requests’ response time falls. The metric
is useful for latency-sensitive tasks.

Percentages of Service-Level Agreement violations
(SLAVs). SLAVs measure the percentage of requests that fail
to meet user-defined SLAs, typically in terms of response time
thresholds. A lower SLAV percentage indicates better adher-
ence to performance guarantees and better service availability.

2) Baseline Methods: We compare QueueFlower with the
average allocation strategy (AVG), Kubernetes Auto-scaler
(HPA) [28], and the state-of-the-art algorithm Holistic Auto-
scaling (HAB) [4].

Average allocation strategy (AVG). This strategy dis-
tributes the available resources equally to each service in the
microservice system.

Horizontal Pod Autoscaler (HPA). HPA continuously
monitors CPU or memory usage and adjusts the pod count
accordingly, ensuring that the current metric value stays below
the target resource utilization. In our experiment, we set the
target CPU utilization to 60% by default.

Holistic auto-scaling (HAB): HAB [4] is based on Jackson
queuing network framework. HAB establishes the close form
of system latency under strong assumptions on the arrival and
service processes, which is used to search for the best resource
allocation for services.

3) Experiment Design: We design two sets of experiments
to validate the effectiveness of QueueFlower and compare it
with baseline methods. We repeat either set of experiments for
10 times and get the averaged values of evaluation metrics to
reduce randomness.

In the first set of experiments, four types of requests arrive
at a stationary rate with the distribution [35%, 30%, 20%,
15%], and they are sent at the rate of 800 requests per second.

https://github.com/caohch-1/QueueFlower


0 2 4 6 8 10 12 14
Epochs

50
100
150
200
250

La
te

nc
y 

(m
s)

QueueFlower
AVG

HPA
HAB

(a) Search.

0 2 4 6 8 10 12 14
Epochs

2
3
4
5
6
7
8
9

La
te

nc
y 

(m
s)

QueueFlower
AVG

HPA
HAB

(b) Recommendation.

0 2 4 6 8 10 12 14
Epochs

40
60
80

100
120
140

La
te

nc
y 

(m
s)

QueueFlower
AVG

HPA
HAB

(c) Reservation.

0 2 4 6 8 10 12 14
Epochs

1.0
1.5
2.0
2.5
3.0

La
te

nc
y 

(m
s)

QueueFlower
AVG

HPA
HAB

(d) Login.

Fig. 4: The average latency for the four types of requests under a stationary traffic pattern.

0 2 4 6 8 10 12 14
Epochs

200
400
600
800

1000
1200

La
te

nc
y 

(m
s)

QueueFlower
AVG

HPA
HAB

(a) Search.

0 2 4 6 8 10 12 14
Epochs

5.0
7.5

10.0
12.5
15.0
17.5
20.0
22.5
25.0

La
te

nc
y 

(m
s)

QueueFlower
AVG

HPA
HAB

(b) Recommendation.

0 2 4 6 8 10 12 14
Epochs

150
200
250
300
350
400
450
500

La
te

nc
y 

(m
s)

QueueFlower
AVG

HPA
HAB

(c) Reservation.

0 2 4 6 8 10 12 14
Epochs

2
4
6
8

10
12

La
te

nc
y 

(m
s)

QueueFlower
AVG

HPA
HAB

(d) Login.

Fig. 5: The P90 tail latency for the four types of requests under a stationary traffic pattern.

0 2 4 6 8 10 12 14
Epochs

10
15
20
25
30
35
40
45
50

Pe
rc

en
ta

ge
 (%

)

QueueFlower
AVG

HPA
HAB

(a) Search.

0 2 4 6 8 10 12 14
Epochs

0
5

10
15
20
25
30
35

Pe
rc

en
ta

ge
 (%

)

QueueFlower
AVG

HPA
HAB

(b) Recommendation.

0 2 4 6 8 10 12 14
Epochs

10
20
30
40
50
60

Pe
rc

en
ta

ge
 (%

)
QueueFlower
AVG

HPA
HAB

(c) Reservation.

0 2 4 6 8 10 12 14
Epochs

0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5

Pe
rc

en
ta

ge
 (%

)

QueueFlower
AVG

HPA
HAB

(d) Login.

Fig. 6: The SLA violations for the four types of requests under a stationary traffic pattern with strict SLA [50ms, 50ms, 3ms,
1ms] for search, reservation, login, and recommendation.

0 5 10 15 20 25
Epochs

50

100

150

200

250

La
te

nc
y 

(m
s)

QueueFlower
AVG

HPA
HAB

(a) Search.

0 5 10 15 20 25
Epochs

2

4

6

8

10

La
te

nc
y 

(m
s)

QueueFlower
AVG

HPA
HAB

(b) Recommendation.

0 5 10 15 20 25
Epochs

20
40
60
80

100
120
140

La
te

nc
y 

(m
s)

QueueFlower
AVG

HPA
HAB

(c) Reservation.

0 5 10 15 20 25
Epochs

1.0
1.5
2.0
2.5
3.0
3.5
4.0

La
te

nc
y 

(m
s)

QueueFlower
AVG

HPA
HAB

(d) Login.

Fig. 7: The average latency for the four types of requests under a non-stationary traffic pattern.

0 5 10 15 20 25
Epochs

100
200
300
400
500
600
700
800
900

La
te

nc
y 

(m
s)

QueueFlower
AVG

HPA
HAB

(a) Search.

0 5 10 15 20 25
Epochs

10
20
30
40
50
60

La
te

nc
y 

(m
s)

QueueFlower
AVG

HPA
HAB

(b) Recommendation.

0 5 10 15 20 25
Epochs

100
150
200
250
300
350
400
450

La
te

nc
y 

(m
s)

QueueFlower
AVG

HPA
HAB

(c) Reservation.

0 5 10 15 20 25
Epochs

5

10

15

20

25

La
te

nc
y 

(m
s)

QueueFlower
AVG

HPA
HAB

(d) Login.

Fig. 8: The P90 tail latency for the four types of requests under a non-stationary traffic pattern.



0 2 4 6 8 10 12 14
Epochs

10
15
20
25
30
35
40
45
50

Pe
rc

en
ta

ge
 (%

)
QueueFlower
AVG

HPA
HAB

(a) Search.

0 2 4 6 8 10 12 14
Epochs

0
5

10
15
20
25
30
35

Pe
rc

en
ta

ge
 (%

)

QueueFlower
AVG

HPA
HAB

(b) Recommendation.

0 2 4 6 8 10 12 14
Epochs

10
20
30
40
50
60

Pe
rc

en
ta

ge
 (%

)

QueueFlower
AVG

HPA
HAB

(c) Reservation.

0 2 4 6 8 10 12 14
Epochs

0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5

Pe
rc

en
ta

ge
 (%

)

QueueFlower
AVG

HPA
HAB

(d) Login.

Fig. 9: The SLA violations for the four types of requests under a non-stationary traffic pattern with strict SLA [50ms, 50ms,
3ms, 1ms] for search, reservation, login, and recommendation.

We set strict SLAs, i.e., user-defined response time thresholds,
for four types of requests to 50, 50, 3, and 1 milliseconds,
respectively. We set strict SLAs to evaluate QueueFlower’s
reaction to various requests’ SLAs.

For the second set of experiments, we assess QueueFlower
and other baselines under a non-stationary workload. The dis-
tribution of four types of requests remains the same. However,
the request sending rate is dynamically changing. As shown in
Fig. 3, we change the request rate by applying a daily workload
pattern extracted from real-world data collected in a production
MLaaS cluster in Alibaba [29].

C. Result Analysis

1) Scaling under Stationary Workload: Fig. 4a- 4d, 5a- 5d,
and 6a- 6d plot the average latencies, P90 tail latencies, and
percentage of SLA violations under QueueFlower, AVG, HPA
and HAB for the search, recommendation, reservation, and
login requests, respectively. The results show that since HPA
does not take the request congestion state into account, not all
the available pods are allocated. HPA determines the resource
allocation only based on CPU or memory consumption, result-
ing in high latency and a percentage of SLA violations. AVG
allocates all available resources evenly, this purely static policy
cannot dynamically allocate the right amount of resources
to particular services with high latencies, and thus is not as
effective as QueueFlower and HAB.

We observe that QueueFlower achieves lower latencies than
the baseline methods on search and reservation requests, while
it achieves higher latencies than the baseline methods on
login and recommendation requests. The result is expected,
since login and recommendation requests’ routes are short,
and search and reservation requests’ routes are lengthy. To
reduce the overall latency of all requests, QueueFlower tends
to allocate more resources to services along the lengthy
requests’ routes. To summarize, compared with the baseline
methods, QueueFlower achieves significant performance gains
in all three metrics. QueueFlower has a lower average latency
with gains of 64.93, 97.85, and 8.84 milliseconds; a lower
P90 tail latency with gains of 272.35, 415.93, and 40.92
milliseconds; and a lower SLA violation with gains of 17.26%,
20.28%, and 1.17%. These results show that QueueFlower can
automatically allocate different amounts of resources based on

the latency of different services to reduce the overall latency
and SLA violations.

2) Scaling under Non-stationary Workload: Compared to
stationary workload, non-stationary workload requires scaling
mechanisms to quickly reallocate resources to blocked services
in case of an unknown change in request arrival rate.

Fig. 7a- 7d, 8a- 8d, and 9a- 9d plot the average laten-
cies, P90 tail latencies, and percentages of SLA violations
under QueueFlower, AVG, HPA and HAB for the search,
recommendation, reservation, and login requests, respectively.
Benefiting from the design of proportional adjustment based
on the updates to the virtual queues, QueueFlower can quickly
reallocate available resources after the services’ latencies
have changed. More resources are allocated to highly loaded
services to reduce the overall latency. Considering all four
requests together, QueueFlower has a lower average latency
with gains of 66.25, 97.59, and 44.7 milliseconds; a lower
P90 tail latency with gains of 273,02, 300.58, and 192.86
milliseconds; and a lower SLA violation with gains of 23.16%,
35.08%, and 16.16%. These results show that QueueFlower
can efficiently allocate available resources to guarantee low
latencies and a percentage of SLA violations under the highly
dynamic non-stationary workload.

VI. CONCLUSION

In this paper, we propose QueueFlower, a novel online auto-
scaling framework that leverages the real-time system infor-
mation, identifies congested services, and adjusts the number
of resources allocated for service nodes via queue balancing
algorithm. QueueFlower can support the maximal flow arrival
rate (throughput optimal), thus providing guarantees for the
user-defined Service-Level Agreements. We have implemented
a prototype of QueueFlower, and conducted experiments on
a real-world microservice application. The results show that
QueueFlower outperforms the existing mechanisms in reduc-
ing requests’ latencies and minimizing SLA violations under
both stationary and non-stationary workloads.

ACKNOWLEDGEMENT

The work was partially supported by the Shanghai Sailing
Program 22YF1428600 and 22YF1428500, the National Na-
ture Science Foundation of China under grant 62302305.



REFERENCES

[1] L. Bănică, C. S, tefan, and A. Hagiu, “Leveraging the microservice
architecture for next-generation iot applications,” Scientific Bulletin –
Economic Sciences, 2017.

[2] A. Jindal, V. Podolskiy, and M. Gerndt, “Performance modeling for
cloud microservice applications,” in Proceedings of the 2019 ACM/SPEC
International Conference on Performance Engineering, 2019.

[3] J. Shi, H. Zhang, Z. Tong, Q. Chen, K. Fu, and M. Guo, “Nodens: En-
abling resource efficient and fast qos recovery of dynamic microservice
applications in datacenters,” in USENIX Annual Technical Conference,
2023.

[4] J. Tong, M. Wei, M. Pan, and Y. Yu, “A holistic auto-scaling algorithm
for multi-service applications based on balanced queuing network,” in
IEEE International Conference on Web Services (ICWS), 2021.

[5] H. Guo, H. Cao, J. He, X. Liu, and Y. Shi, “Pobo: Safe and optimal re-
source management for cloud microservices,” Performance Evaluation,
2023.

[6] C. Meng, S. Song, H. Tong, M. Pan, and Y. Yu, “Deepscaler: Holistic
autoscaling for microservices based on spatiotemporal gnn with adaptive
graph learning,” in 2023 38th IEEE/ACM International Conference on
Automated Software Engineering (ASE), 2023.

[7] S. Luo, H. Xu, K. Ye, G. Xu, L. Zhang, G. Yang, and C. Xu, “The
power of prediction: microservice auto scaling via workload learning,”
in Proceedings of the 13th Symposium on Cloud Computing, 2022.

[8] X. He, Z. Tu, M. Wagner, X. Xu, and Z. Wang, “Online deployment
algorithms for microservice systems with complex dependencies,” IEEE
Transactions on Cloud Computing, 2023.

[9] J. R. Jackson, “Jobshop-like queueing systems,” Manag. Sci., 2004.
[10] Y. Zhang, W. Hua, Z. Zhou, E. Suh, and C. Delimitrou, “Sinan: Ml-

based and qos-aware resource management for cloud microservices,” in
Proceedings of the 26th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, 2021.

[11] Z. Ding, S. Wang, and C. Jiang, “Kubernetes-oriented microservice
placement with dynamic resource allocation,” IEEE Transactions on
Cloud Computing, 2023.

[12] S. Wang, Y. Guo, N. Zhang, P. Yang, A. Zhou, and X. S. Shen,
“Delay-aware microservice coordination in mobile edge computing:
A reinforcement learning approach,” IEEE Transactions on Mobile
Computing, 2021.

[13] C. Meng, J. Tong, M. Pan, and Y. Yu, “Hra: An intelligent holistic
resource autoscaling framework for multi-service applications,” in 2022
IEEE International Conference on Web Services (ICWS), 2022.

[14] N. Liu, Z. Li, Z. Xu, J. Xu, S. Lin, Q. Qiu, J. Tang, and Y. Wang,
“A hierarchical framework of cloud resource allocation and power
management using deep reinforcement learning,” in 2017 IEEE 37th
International Conference on Distributed Computing Systems (ICDCS),
2017.

[15] Z. Yang, P. Nguyen, H. Jin, and K. Nahrstedt, “Miras: Model-based re-
inforcement learning for microservice resource allocation over scientific
workflows,” in 2019 IEEE 39th International Conference on Distributed
Computing Systems (ICDCS), 2019.

[16] G. Tesauro, N. Jong, R. Das, and M. Bennani, “A hybrid reinforcement
learning approach to autonomic resource allocation,” in IEEE Interna-
tional Conference on Autonomic Computing, 2006.

[17] J. D. C. Little, “A proof for the queuing formula: l = λw,” Operations
Research, 1961.

[18] L. Tassiulas and A. Ephremides, “Stability properties of constrained
queueing systems and scheduling policies for maximum throughput in
multihop radio networks,” ieeetac, 1992.

[19] F. Kelly, “Charging and rate control for elastic traffic,” European
Transactions on Telecommunications, 1997.

[20] F. P. Kelly and R. J. Williams, “Fluid model for a network operating un-
der a fair bandwidth-sharing policy,” The Annals of Applied Probability,
2004.

[21] B. Li and R. Srikant, “Queue-proportional rate allocation with per-link
information in multihop wireless networks,” Queueing Systems, 2016.

[22] “Docker desktop,” https://www.docker.com/products/docker-desktop/.
[23] “Kubernetes,” https://kubernetes.io/.
[24] Y. Gan, Y. Zhang, D. Cheng, A. Shetty, P. Rathi, N. Katarki, A. Bruno,

J. Hu, B. Ritchken, B. Jackson, K. Hu, M. Pancholi, Y. He, B. Clancy,
C. Colen, F. Wen, C. Leung, S. Wang, L. Zaruvinsky, M. Espinosa,
R. Lin, Z. Liu, J. Padilla, and C. Delimitrou, “An open-source benchmark
suite for microservices and their hardware-software implications for

cloud & edge systems,” in Proceedings of the Twenty-Fourth Interna-
tional Conference on Architectural Support for Programming Languages
and Operating Systems, 2019.

[25] “Wrk2,” https://github.com/giltene/wrk2.
[26] “jaeger,” https://www.jaegertracing.io/.
[27] “Kubernetes python client,” https://github.com/kubernetes-client/python.
[28] “Kubernetes horizontal pod autoscaling,”

https://kubernetes.io/docs/tasks/run-application/horizontal-pod-
autoscale/.

[29] Q. Weng, W. Xiao, Y. Yu, W. Wang, C. Wang, J. He, Y. Li, L. Zhang,
W. Lin, and Y. Ding, “Mlaas in the wild: Workload analysis and
scheduling in large-scale heterogeneous GPU clusters,” in 19th USENIX
Symposium on Networked Systems Design and Implementation,, 2022.

 https://www.docker.com/products/docker-desktop/
 https://kubernetes.io/
https://github.com/giltene/wrk2
 https://www.jaegertracing.io/

	Introduction
	Related Work
	System Model
	QueueFlower
	Experimental Evaluation
	Implementation
	Evaluation Methodology
	Evaluation Metrics
	Baseline Methods
	Experiment Design

	Result Analysis
	Scaling under Stationary Workload
	Scaling under Non-stationary Workload


	Conclusion
	References

