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Abstract—Second-order vulnerabilities, such as second-order
Cross-Site Scripting (XSS) and Server-Side Request Forgery
(SSRF), occur when user-controlled inputs are stored in databases
and later retrieved in different execution contexts, complicating
static detection. Existing static analysis approaches struggle
primarily with two challenges. First, they struggle in accurately
identifying database-accessing functions defined by third-party
libraries or custom data access layers, often leading to missed
taint propagation paths. Second, they may fail to contextu-
ally model database operations when queries are dynamically
constructed and depend on runtime parameters. To address
these limitations, we propose STAINT, a novel bi-directional
static analysis method that integrates taint analysis with large
language models (LLMs). Using semantic reasoning, STAINT
accurately identifies and models custom database reads and
writes, effectively reconstructing comprehensive taint data flows
in the database. Preliminary evaluations on ten real-world PHP
applications show that STAINT successfully detects 56 second-
order vulnerability paths, including 7 previously unknown cases,
outperforming existing techniques.

Index Terms—Second-order vulnerabilities, Taint analysis,
PHP

I. INTRODUCTION

PHP remains one of the most widely used server-side
languages for web applications, such as content management
systems (CMS) and e-commerce platforms [1]. These ap-
plications frequently accept user input for use in security-
critical operations. When untrusted data from an external
source propagates through an application and is used in
a sensitive operation without proper sanitization, taint-style
vulnerabilities occur [2]. Common examples include SQL
injection, Cross-Site Scripting (XSS), and Server-Side Request
Forgery (SSRF). The consequences of taint-style vulnerabili-
ties are severe, ranging from sensitive data leakage and session
hijacking to complete server compromise. For example, a 2019
SSRF vulnerability in a Capital One service led to the leakage
of data from over 100 million user accounts, resulting in an
$80 million regulatory penalty [3].

Taint-style vulnerabilities can be classified by their exe-
cution path [4]. Vulnerabilities triggered immediately within
a single request are known as first-order and have been
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extensively studied [5]–[12]. In contrast, second-order vul-
nerabilities occur when a malicious payload is first stored
in a database, and later retrieved and executed in a different
context [4]. These vulnerabilities are explored less often in
static analysis due to the significant challenges involved in
tracking data across separate program executions. For instance,
a second-order XSS attack might involve injecting a payload
into a user profile, which is stored in the database and
later rendered on an administrator’s dashboard, executing the
malicious script in a privileged context.

To identify second-order vulnerabilities using static taint
analysis, accurate modeling of data flows through databases is
required. Existing work such as RIPS [13], PHPJOERN [14]
and TCHECKER [2] have established comprehensive taint
propagation rules for PHP but focused primarily on first-order
vulnerabilities. However, extending their analysis to second-
order vulnerabilities is non-trivial.

Previous work has attempted to bridge this gap. Johannes
et al. [15] first integrated SQL parsing with taint analysis,
and TORPEDO [16] later combined string analysis with SQL
parsing. SPLENDOR [4] introduced heuristic token matching
to identify database operations without the need for explicit
SQL strings. Beyond PHP, DBridge [17] developed a pointer
analysis for Java database-backed applications, but relied on
manually specified database access APIs for frameworks such
as JDBC. Despite these advances, two major challenges persist
for static taint analysis.

The first challenge is recognizing custom database func-
tions. Although PHP provides built-in database methods such
as PDO::query, real-world applications heavily rely on
custom Data Access Layers (DALs) or third-party libraries to
abstract database interactions [4]. Tools such as the updated
RIPS [15] and TORPEDO [16] only recognize built-in func-
tions, leading to false negatives when custom wrappers are
used. SPLENDOR [4] partially addresses this by heuristically
identifying the most frequently called functions as database
function candidates, but this approach remains unreliable for
diverse, project-specific abstractions. For example, in Figure 1,
the Users::save method on line 10 is a custom DAL
function that existing tools would fail to identify as a database



1 /*
2 Tablename: vtiger_users
3 Columns: first_name, last_name, ...
4 */
5 // Save.php
6 $userObj = new Users();
7 ...

8 $userObj-> first_name = $_REQUEST ['first_name'];

9 ...
10 $userObj-> save ("Users");
11

12 // Users.php
13 class Users {
14 /** * Function to save the user information
15 * into the database
16 */
17 public function save ($module_name) {...}
18 }
19

20 class PearDatabase {
21 public function query ($sql,...) {}

22 }
23

24 // UserDeleteStep1.php
25 $sql = "select * from vtiger_users";
26 ...
27 do {

28 $user_name = $row ['first_name'];

29 ...

30 $output .= $user_name ;

31 ...

32 } while ( $row = $adb->query($sql) );

33 ...

34 echo $output ;

Fig. 1. A second-order vulnerability in Corebos. represents taint flows
from source to database write function , while represents taint flows
from database read function to sink .

write operation, thus breaking the taint flow analysis.
The second challenge is accurately modeling the con-

textual behavior of database operations. Static analysis
needs to accurately determine the specific database tables
and columns affected by each operation to correctly trace
second-order vulnerabilities [4]. Tools like RIPS and TOR-
PEDO primarily rely on static SQL string extraction and
parsing and thus struggle to model dynamic or abstracted
queries constructed at runtime. SPLENDOR’s fuzzy token-
matching approach partially alleviates this by identifying likely
SQL tokens in source code tokens. However, the technique
in SPLENDOR remains ineffective when code tokens do not
directly reflect common SQL tokens. For example, in Figure 1,
user input taints the first_name attribute of $userObj
on line 8. Accurate analysis must recognize that invoking
Users::save("Users") (line 10) results in a database
write to the first_name column of the vtiger_users
table. RIPS and TORPEDO fail here because there are no static
SQL statements. SPLENDOR fails here because recognizable
SQL operation tokens such as SELECT or UPDATE are absent.

To overcome these limitations, this paper presents STAINT,
a novel bidirectional static analysis approach that leverages
Large Language Models (LLMs) to detect second-order vul-
nerabilities in PHP applications. While recent work has suc-
cessfully used LLMs to infer project-specific taint speci-
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Fig. 2. The overall architecture of STAINT.

fications [18]–[20] or validate bug reports [21], our work
applies LLMs to the problem of identifying and modeling
the semantics of database interactions at their call sites in
PHP code. STAINT first uses bidirectional static analysis to
identify taint flow paths both from sources to database writes
and from database reads to sensitive sinks. Then, from the taint
flow paths and corresponding source code, LLMs are used to
identify custom database functions and model their contextual
behavior at each call site. Finally, complete taint flow paths
involving databases can be connected by pairing the modeled
database operations, and LLMs recognize custom sanitizers
on taint flow paths to reduce false positives. The preliminary
evaluation shows that our approach enables the semantic
interpretation of database operations in highly abstracted code,
improving the detection rate of second-order vulnerabilities.

II. METHODOLOGY

STAINT is structured into four phases: Potential Taint Flow
Path Extraction, Database Function Identification, Database
Operation Modeling, and Database Operation Matching. Fig-
ure 2 illustrates the overall architecture. First, STAINT extracts
disconnected taint flow paths using bidirectional taint analysis.
Next, STAINT identifies custom database interaction functions.
Then, STAINT models the semantics of database operations at
call sites using schema information. Finally, STAINT recon-
structs second-order flows by matching reads and writes and
applies LLM-based verification to eliminate sanitized paths,
producing the final detection results.

A. Phase 1: Extract Potential Taint Flow Paths

STAINT first extracts disconnected taint flow paths that may
later form complete second-order vulnerabilities. Since such
vulnerabilities involve writing tainted data into a database
and later reading it, traditional analysis produces two disjoint
paths: one from sources to database writes and another from
database reads to sinks.

To obtain these paths, we perform bidirectional taint anal-
ysis on the application’s Code Property Graph (CPG) [22].
Predefined sources (e.g., $_GET) and sinks (e.g., echo)
follow prior work [2], [4], [13], [14], [20]. The output of this
phase is a collection of possible second-order vulnerability
paths, such as Cross-Site Scripting (XSS), SSRF, and SQL
Injection.



B. Phase 2: Identify Database Functions

In second phase, STAINT identifies custom database inter-
action functions. While built-in PHP functions [23] are prede-
fined and easily classified, project-specific wrappers and third-
party functions often evade existing tools. STAINT addresses
this gap by analyzing functions present in the extracted taint
flow paths with LLMs.

We begin by collecting all functions located on the collected
taint flow paths. Built-in functions are filtered out since their
classifications are predefined. The remaining functions form a
refined candidate set, denoted as APIA.

Each candidate is then classified using an LLM. The input
to the LLM consists of the function signature, PHPDoc com-
ments, and the full implementation source code. The model’s
task is to categorize the function as a read, write, both, or none.
The output yields two subsets: APIw, containing database
write functions, and APIr, containing database read functions.

For instance, in Figure 1, the bidirectional taint analysis
captures the functions save (line 10) and query (line 32).
Their respective definitions (lines 17 and 21) are provided to
the LLM, which then classifies save as a database write and
query as a read/write function.

C. Phase 3: Model Database Operations

Identifying a function as a database interaction is insufficient
for connecting taint flow paths since we need to model which
tables and columns the operation involves in order to pair
them.

Before taint analysis, we extract the application’s database
schema. If schema definition files (.sql) are available, they
are executed in a local database environment to obtain accurate
schema information, including table and column names. If not,
we manually run the application once and dump the resulting
schema. This schema serves as the ground truth provided to
LLMs for inferring the exact database elements referenced in
operations.

Then, the LLM is prompted to model the semantics of
each database interaction call site within the taint flow paths.
For writes in APIw, the input to the LLM includes the
function source code, the relevant taint propagation paths
reaching the call site, and the schema information. The output
specifies the location of the call site, the table name, and the
affected columns, stored in the set Sw. Similarly, for reads in
APIr, the LLM receives the function code, taint context, and
schema information. The output includes the referenced tables,
columns, and return type (e.g., associative array or object),
which are stored in the set Sr. These return types are crucial
for synthesizing taint in subsequent verification analysis.

For example, the call to save (line 10 in Figure 1) is
modeled as writing to the first_name column of the
vtiger_users table. Conversely, the call to query (line
33) is modeled as reading all columns from the same table.

D. Phase 4: Match Database Operations and Verify Paths

The final phase reconstructs complete second-order taint
flow paths by matching database writes to subsequent reads

TABLE I
Second-order vulnerability detection results. SPLENDOR’s results are taken

from their paper [4] and are shown for comparison. STAINT was also
evaluated on five additional applications not previously tested. Newly

detected vulnerabilities are marked with green background .

Application STAINT
TP

STAINT
FP

Splendor
TP

Splendor
FP

phpBB v2.0.23 4 2 3 2

PunBB v1.4 5 0 4 0

Catfish v5.4.0 6 0 4 2

osCommerce v2.3.3.4 25 2 7 2

Corebos v5.5 5 2 2 0

Total (Comparison) 45 6 20 6

yzmcms v5.3.0 3 1 / /

Royal Elementor Addons
v1.7.1013

3 (new) 1 / /

WP-DownloadManager
v1.68.4

1 0 / /

MetForm v3.9.7 3 (new) 0 / /

POST SMTP Mailer
v2.8.5

1 (new) 0 / /

Grand Total (Ours) 56 8

and verifying the resulting flows.
The first step involves matching each modeled write op-

eration in Sw with corresponding reads in Sr based on table
and column names. Wildcard reads (*) are treated as matching
any column in the specified table. A successful match indicates
the presence of a potential second-order taint flow through the
database.

After a match is identified, it must be verified whether
the tainted column is actually used at the read site.
Since a read may fetch all columns but only a subset is
tainted, synthetic taint assignments are introduced to ex-
plicitly track column-level propagation. For example, if a
query retrieves all columns, a synthetic assignment such
as $row['first_name'] = $_TAINTED; is inserted to
determine if the tainted value flows into a sink. A subsequent
forward taint analysis then verifies whether this synthetic taint
reaches a sensitive sink, thus confirming a true second-order
vulnerability.

To minimize false positives caused by sanitizers, STAINT
employs LLM-based sanitizer identification. For each recon-
structed taint flow, the LLM is provided with code snippets
along the path. Instead of the entire codebase, which would
exceed context limits, inspired by prior work [21], [24], we
provide two retrieval tools: a text search tool for locating
relevant snippets and a function extraction tool for retrieving
complete function definitions by line number. With function
calling capability, the LLM iteratively queries these tools to
gather sufficient context and then determines whether the flow
is neutralized by sanitization. The output of this process is the
final filtered set of confirmed vulnerabilities.

III. PRELIMINARY EXPERIMENTS

We implemented a prototype of STAINT, integrating Jo-
ern [25] for Code Property Graph (CPG) generation, Phan [26]



1 function redirect($destination_url, $message) {
2 ...
3 echo $destination_url;
4 }
5

6 function sef_friendly($str) {
7 ...
8 $str = preg_replace(
9 ['/[ˆa-z0-9\s]/', '/[\s]+/'],

10 ['', '-'],
11 $str);
12 ...
13 return $str;
14 }
15

16 $cur_post['subject'] = $_TAINTED;
17 ...
18 redirect(sef_friendly($cur_post['subject']));

Fig. 3. A false positive pruned by STAINT.

for static taint analysis, and GPT-4 [27] for semantic reason-
ing tasks. To evaluate STAINT, we conducted experiments
on 10 PHP web applications. Our comparison focuses on
SPLENDOR, the state-of-the-art approach for second-order
PHP vulnerability detection, which has demonstrated superior
performance over prior methods such as RIPS [15]. Five of
the selected applications were previously analyzed by SPLEN-
DOR [4], allowing direct comparison, while the remaining five
were newly selected from GitHub and the WordPress Plugin
Repository to ensure diversity. To identify new vulnerabilities,
we cross-referenced detected vulnerabilities against reports
from SPLENDOR, the CVE database, and the application issue
trackers. Only vulnerabilities absent from all three sources are
considered new and reported to the respective developers.

We measured performance by identifying true positives
(TP), i.e., vulnerabilities correctly reported by STAINT, and
false positives (FP), representing benign paths incorrectly
flagged. Table I presents a comparative analysis between
STAINT and SPLENDOR. Overall, our method detected 56
true second-order vulnerability paths, including 7 previously
unknown cases, with 8 false positives, yielding a precision of
87.5%. The 7 unknown cases have been reported to developers
and 4 confirmed.

Due to the unavailability of the complete source code of
SPLENDOR, direct comparison is limited to five applications
analyzed previously. In this subset, STAINT identified 45
second-order vulnerability paths, more than doubling the 20
paths reported by SPLENDOR. This substantial improvement
demonstrates the effectiveness of our LLM-based approach in
addressing the two key challenges of second-order vulnerabil-
ity detection.

The better detection coverage of STAINT is mainly due to
its ability to identify and model custom database functions
that existing tools lack. For example, in Figure 1, SPLENDOR
fails to recognize the database function on line 10 because
it is not among the top three most frequently called func-
tions, thus missing this vulnerability. Even if SPLENDOR
could recognize Users::save, it would fail to model the
operation, since the call does not contain tokens contained
in traditional SQL statements such as INSERT or UPDATE.
Instead, save is used to indicate a database write operation,

while object fields such as first_name indicate the affected
columns. This pattern is common in modern PHP applications,
where database operations are abstracted behind semantic
method names. On the other hand, STAINT’s bidirectional taint
analysis combined with LLM-based semantic understanding
enables it to understand the semantic relationship between
function parameters, object properties, and database schema.
The database operation is then modeled without the actual
SQL statements. As shown in Figure 1, the table name is
inferred from the class name User, the column name is
inferred from the property name first_name, while the
write operation is inferred from the method name save.

STAINT’s false positive rate depends on the LLM’s ability
to identify and interpret custom sanitization functions. As
shown in Figure 3, the variable $cur_post['subject']
is tainted and propagates to a sink on line 3 in the function
redirect on line 18. Although a second-order XSS vulner-
ability is flagged, a custom sanitizer sef_friendly on line
6 removes non-alphanumeric characters and converts spaces
to dashes. The LLM correctly identifies the sanitizing logic
and determines that an alphanumeric and dash-only payload
cannot trigger XSS, thus pruning the false positive. How-
ever, false positives still occur, particularly when applications
impose length limitations that make exploitation unfeasible.
For example, one false positive involved usernames truncated
before output using substr($name, 0, 5) length limit,
which makes XSS exploits unfeasible.

IV. CONCLUSION AND FUTURE WORK

This paper presents a novel method for statically detecting
second-order vulnerabilities such as second-order XSS and
SSRF in PHP web applications. Our approach integrates taint
analysis with the semantic reasoning capabilities of large
language models (LLMs) to identify and model database
operations hidden within user-defined APIs, and finally to
reconstruct taint flows that pass through database. Preliminary
evaluations show that our method outperforms existing tools
like SPLENDOR, identifying 56 second-order vulnerability
paths in 10 real-world applications, 7 of which are new.

In future work, we will address the limitations of STAINT.
First, to reduce false positives, we will use context-sensitive
analysis to pinpoint when tainted inputs are constrained (e.g.
by limiting length), preventing exploitation. Second, due to
the computational demands of large language models on
large codebases, we will explore lighter, locally hosted, or
fine-tuned models for specific tasks. Third, manual schema
extraction limits scalability. Previous research [4] shows that
only about 30% of applications have explicit .sql files
for automatic extraction. To enhance scalability, we plan
to integrate LLM-agent-based automated techniques such as
ExecutionAgent [28] to set up the project automatically and
then dump the schema.
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